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Preface

aRa,

This report proposes to investigate and apply various quantal re-
sponse models to determine the applicability of these methods on data
generated by the Avionics Evaluation Program. It is hoped that this
effort will be a basis for moving quantal response methods out aof the
realm of bio-assay and into more general applications.

1 wish to acknowledge my indebtedness to my thesis committee, Or.
Joseph Cain (reader), and to the ever patient Dr. David Barr, whose sug-
gestions and quidance were invaluable to this effort. [ would like to
give a special thanks to Dr. Thomas W. Copenhaver, of Wyeth Laborator-
ies, for his support of this effort, and particularly for the computer

source code and program deck which he gave me. I would also like to

effort.

Larry G. Kehl
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3 \EV \\\\ Abstract
L v . . ‘ .
f:; The United States Air Force has, over the past decade or so, in-
ey vested much time and money in computer simulations and models. At the
most basic level almost all of these simulations are input-output type |
}é procedures; variables of interest are changed to determine the effect
'h
Xy they have on some other factor. This process is virtually indistin-
i
guishable from dose-response problems in bio-assay, hence, is capab' » of
{; being analyized by the same methods used in bio-assay. The two mos
2]
o
; commonly used techniques are probit and logit, but there are many other
&
. available techniques. An alternative to performing numerous, and somi.—
§ times redundant, simulations is to use these techniques whenever pos- :
“ 1
3 sible. - |
, 0 Data from the Avionics Evaluation Progran;. (AEP) :»ere used as the |
< basis for estimating the probability of aircraft abort, based on the
:3 mean-time-between-failure (MTBF) of various equipment items, using four

quantal assay techniques. The fits obtained from these models were com-

.

pared to the more popular probit and logit results previously obtained

by Dr. David Barr.
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EXPLORATION OF DOSE-RESPONSE TECHNIGQUES WITH SOME

APPLICATIONS TO A SIMULATION PROBLEM

I INTRODUCTION

Background: An Analysis Problem

It is common for analysts to use computer modeling and simulations
in problem solving. The reasons for using simulations are numerous.
However, simulations usually help the analyst determine the response of
some system to a change in that system’s environment, or operating char-
acteristics. In other words, simulations help the analyst describe, pre-
dict, or simply understand the behavior of a complex system under a given
set of circumstances.

There is no doubt that simulations are useful, but is it always -
practical or necessary to use them? It is not hérd to think of situa-
tions where the answer is no, and the spécific situation described be-
low is just one such example.

My last project as an analyst for the Avionics Laboratory at WPAFB
was to run computer simulations of a mission analysis program (Appendix
A). The project was to determine the mission gffectivenpss of the ATF
(advanced tactical fighter) with a mixed suitebof existing and concep-
tual (new) avionics. One of the measures of effectiveness was aircraft

aborts due to failure of a particular piece of equipment, or subsystem,

with varying MTBFs (mean-time-between-failure).

SO SNV
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I performed several thousand simulations for this analysis. Unfor-
tunately, even with such a large number of simulations all | had was a
dozen or so data points (i.e. MTBF-abort pairs) for each piece of equip-
ment. If there was a need for an abort rate at some MTBF not previously
considered then either another simulation, or some estimate based on the
existing data would be required.

Since it was not, and usually is not, practical to run computer
models for every conceivable point it was obvious that there was a need
for some curve-fitting technique. It was at this point that my working
group contacted Dr. David Barr (Air Force Institute of Technology) and
asked him to study the probiem. He determined that there were tech-
niques for "...estimating probabilities when given a set of relative
frequencies, each obtained as the response of a system to a level of
quantitative stimulus, known as probit and logit analysis" (Ref 3:1).

Probit (probability unit) analysis originated in biology and'its
application in that area is widely accepted. The following is the gen-

eral concept of probit (parenthetical matter is my own):

An analyst is interested in the effect of some drug
(failure rate) on the survival (aborts) of a large
number of insects (systems). One possibility is
that each insect (system) survives until a certain
critical dosage (MTBF) is reached and that they all
die (abort) as soon as this limit is surpassed; but
that is an extreme case. It is much more plausible
that the critical level varies from one insect (sys-
tem) to the other according to a certain distribu-
tion. When there are many independent factors de-
termining the critical level for each insect (sys-
tem), the central limit theorem may be used to jus-
tify the choice of the normal distribution. Thus,
when p is the proportion of insects (systems) Killed
(aborted) , the analyst applies the probit transfor-
mation y=F(p) and he then proceeds to express y
linearly in terms of the dosage (MTBF) of the drug.
(Ref34 :439).
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Eg If you were to plot these dose-response (input-output) curves with
i. SRR the dose on the horizontal axis and response on the vertical axis the
i. curve is S-shaped, or sigmoid, and is similar to the cumulative distri-
; bution function.

«aeit seems natural to try to fit a distribution
. function to the points... The probability curve
which came to mind first was the normal, or Gau-
ssian, distribution function; since negative val-
ues... have no physical interpretation, it made
- sense to make a logarithmic trs ormation to the
lognormal distribution. This ' wited in what is
Known as probit analysis. A s !'ar approach,

' 4
. in which the logistic growth ¢ -e is used in place
) of the Gaussian distribution f tion, is Known as
e logit analysis (Ref 3:3).
W
i, Dr. Barr’s work (Ref 3) on the problem of curve-fitting showed po-
:$ tential for the application of these statistical techniques to the “in-
'i put-output’ type problem discussed earlier. However, while these tech-
n ‘:) niques worked well for some equipment items, it worked only marginally
5 well for others, and not at all for still others. This leads to the
&
j following question; are there other dose-response techniques available
to analyze the existing data (Appendix C) which would give either better
f‘ fits, or at least fit those items for which the probit and logit methods
were only marginal? This question is the underlying basis for this ef-
y fort.
%‘ rain n_the Analysis Problem
" i
= Before reviewing existing dose-response techniques (Section II) it
9 is necessary to state some constraints of the existing data which limit,
Gl
ﬁ or eliminate the use of certain techniques. It should be kept in mind
f that these constraints are limiting factors only for this effort; future
: ;
4 ‘
’ |
1 i
i 1
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efforts may be well advised to use techniques which | could not.

The number one constraint is the amount of existing data, 152 data

points total for 17 equipment items. This averages out to about nine

-
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data points for each equipment item, and for some analyses this would be
sufficient. Unfortunately, 180/ of this data yields abort rates less
then 34; this is Known as the low-dose range (usually considered ¢ 8.18
. and presents problems of its own for extrapolation over the rest of the
ny curve,

While it would have been convenient to run more simulations to ob- |

p -'::: ;
}:: tain a wider range of abort rates, it is no longer possible to do so. !
- i
e The AEP model (Appendix A) was removed from use just prior to this ef-

<

fort. But even before removal the model had undergone extensive modifi-

- cation and enhancing, which would have made any comparison of new and

5]

NN old data suspect.
o . . .

X i The second constraint, wh:le not a problem, eliminates the use of
g

?Q techniques known as mutihit and multistage (Refs 2, 17:1277-1278).

Y

C: These models will be discussed in Section II. Basically, however, the
AL problem is that unlike living organisms, which can be exposed to a sub-
Ny stance then periodically re-exposed (rehit) until a tumor or other re-
) sponse is obtained, a hardware item, within the AEP model, fails based
o only on its designed (ore time) MTBF,

o

-?~ A third constraint again stems from the fact that performing new
E; simulations is not possible, which eliminates the use of sequential

o)

<o methods. As the name implies, this technique involves running a simu-

lation, or experiment, and then performing another simulation at either

52 a higher or lower level of the stimulus based on the previous results.
@

o~ - You then repeat this procedure until obtaining the results or accuracy
-4 j . :~ ._\

-:: »

o

* 4
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desired (Refs 8:1-2, 34).

The last set of techniques which cannot be used are Known as "time
to occurrence, or time to response" (Refs ?:181-143, 17:1284-1284).
Since data is not available concerning when items failed there is no

ready data base on which to test these techniques.

Formal Problem Statement an jecti

In a preliminary analysis effort performed by myself (Ref 26) for
the Avionics Laboratory it was of interest to determine the effect of
- various avionics equipment MTBFs on the abort rates for the ATF. Due to
time considerations, complexity of the simulation model, and working
group resources it was desired to find some mathematical tec .e for

. predicting abort rates over a range of MTBFs, using a limited number of

simulations for each equipment item.

‘:3 A study conducted by Dr. Barr (Ref 3) showed the applicability of
using quantal (dose-response) assay techniques for determining these a-
bort rates. In particular, he was able to fit most of the 17 equipment
items under consideration using the probit and logit models.

It is the purpose of this effort to determine what other quantal
assay methods exist which may fit the avionics equipment in question to
dose-response curves, More specifically: what quantal models are avail-
able that will estimate the probability of an abort given an MTBF for a
particular piece of avionics equipment using the existing data of Appen-
dix C? The answers to this question have implications for analysts in
general, particularly where the analysts’ situation involves the use of

simulations.
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Overview

Section Il contains a summary of the types of existing quantal
(dose-response) models. A brief description of each type is given a-
long with the mathematical development where applicable.

In Sections III thru VI the one-hit, a generalization of the probit
and logit, quantit, and a symmetric and asymmetric transformation are
used to analyze and fit the existing sample data. In these sections the
models are explained along with techniques for implementation. Also
discussed are special considerations and limitations of these models as

well as results and interpretation of the results.
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I1 Review of Dose-Response Methods

Any system that yields a response to a given stimulus can use the
methods listed below. The almost exclusive use of these methods in bio-
assay is no reason for their non-use in other areas. The only real con-
straint is that the system response variable must be a random variable
that takes on only one of two values; success or failure, 8 or 1, yes or
no, etc., "...such observations are called binary; an older term is
guantal® (Ref 12:1).

There are numerous quantitative theories that attempt to relate the
frequency of response to the level of stimulus. Crump (Ref 9) and Fish-
bein (Ref 17) categorize the methods most commonly used into two major

types: dichotomous response models and time-to-response models.

hotomous Response 1
One-Hit Model gnd Extensions. The most elementary dose-response

model is the one-hit, or linear, model. "The one-hit model is obtained
by assuming that, with the exception of Ad hits at dosage d, the proba-
bility of exactly x hits is given by the general term of the Poisson

distribution... " (Refs 17:1277, 33). The general term is as follows

P(Xax) = (Ad) *[exp(-ad) 1/x! €2.1)

Clearly if, as in our case, only one hit is required to produce a re-

sponse then the above collapses to

P(d)=P(x21)=1-P(x{(1)=1-exp(-Ad) (2.2)




" where X\ is the process rate, or rate of change of the dose response

e curve at d=e@.

The point was made by Fishbein (Ref 17) that if you are working in

P

the low dose region (p<@8.1) then Ad is small and P(d)=ad. This implies

L

T T

Pl

a2 simple linear model! where the response is directly proportional to the
dose, with siope A\. Since all of the sample data (HTBF-abort pairs) is

well within the low dose region this is one possible model to use.

QALI.\ )

The natural extension to the one-hit model is the multihit model. |
This model considers that if at least K hits of a dose d are required to

produce a response then (Ref 17:1277)

Od L exp-ad)
il

P(d= 1- z

k-1
i=0

Note, if K is allowed to take on non-integer values then

P(d)= t“"exg(-t) dt
() k=1

Rewriting this as:

d Kk k-1
P(d=P(d;k, )= At “exp(-at) dt
(1] )

yields the generalized multihit dose-response model, or more simply a

gamma distribution with scale parameter A -1d a shape parameter K (Ref

33:342) .

BT AR

Another extension or further generalization, if you like, of this

stochastic process is the multistage model, "... where the lifetime
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probability of tumor induction can be expressed as
P(d)-l-oxp[-(ui-ﬁld)(az-ﬁzd)...(uk-ﬁkd)l (2.3

where aiza, ﬁizo, and K represents the number of transitions or muta-
tional stages in the carcinogenic process" (Refs 17:1278, 2). This
mode]l has no application to our hardware items since the dose (MTBF) is
applied only once (as an input parameter, which remains fixed, to the

AEP model, see Appendix A), and where the atove would collapse to:
P(d)=j-expl-(a-$#d) ]

However, the multistage model could be useful if you thought about
failures of an item which did not cause an abort as the mutation. Then

after repairing the failed item it is replaced in the aircraft and the

Q aircraft is flown again (note that the repair restores the MTBF and is

the ‘rehit’ of the item). This process is repeated until a failure (the
number of failures would have to be determined by some stochastic pro-
cess) causes an abort (tumor).

In an article by Guess and Crump (Ref 19) there is one multistage
mode! worth separate discussion. It is a general polynomial model for
dealing with low-dose extrapolation, and is the only mul tistage model
which is well documented and supported in a series of articles (by Guess
and Crump) .

To obtain this model first consider the following:

K
P(d)-l-exp[-!i(a.+ﬁ.(d)’i)]
o Rt B

eeeit is assumed that K, 21 different events must oc-
o cur in a single cell bciore a cancer (response) is

-
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< initiated ... a. is the rate at which an initiating

AN Y event for the ith stage occurs due to a spontaneous )
E R (i.e. not dose related) carcinogenesis, and B.is the

per {.th power dose at which an initiating evént for
the ith stage occurs due to dose-related carcinogen-
esis (Ref 19:17).

‘.‘_‘i"lfl."ﬁ

Now rewriting the above the model becomes

o
‘-"
i P () aP(d)=1-exp(~f(d)) (2.9
'l
" where
! K )
W f(d)st.d‘ .20
"; 4 1 1
o is0
<

‘ and where f is a polynomial with nonnegative coefficients. K is the de-
Q gree of ¥, and along with the coefficients of f must be estimated (Ref
i)
) 19:18).
A

‘;' Note the similarity of Eq (2.4) with the general multistage model

in Eq (2.3). This model, however, uses a general polynomial of unknown

degree to fit the data. This model is of particular interest if one is

NN N Y

working in the medium, or high-dose range and then wishes to extrapclate

to the low-dose range for risk estimates (Ref 19:21-22).

AN AN

To construct confidence intervals Crump et. al. have

¥ . «sdeveloped ‘envelope curves’ which are constructed
- for both risk and dose ... these curves are con-

N structed by binomially simulating 180 sets of dicho-
.: tomous dose-response data, representing 100 indepen-

dent replications of the same experiment ... (with)
the same set of test doses... (Ref 10:449).

-

‘f Guess and Crump (Ref 20) also develop maximum likelihood estimation
;? techniques for this polynomial model.

n' ,‘.';'

\' {'v ’
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Probi it, an neralizationg. The two most commonly used
methods of analysis of binary data are probit (Ref 15 and logit (Ref 5,
12). For the probit (log-probit) model the probability of a response

being induced by a stimulus (dose) d is given by

P(d)= P(a+tPlog d) 2.3

where ¢ denotes the standard cumulative Gaussian (normal) distribution.
The logit model like the probit mode! leads to an S-shaped dose-

response curve; its equation is

P(d) = 1/[1+exp(-(a+Plog d))) (2.8)

It approaches zeroc response as dose d decreases more slowly than does
the probit curves since 1im(P(d)/dM=constant as d¥0 (Ref 17:1279).

Dr. Barr‘s work (Ref 3> on the curve-fitting probiem, using probit
and logit, yielded the values in Tables I and Il for goodness-of-fit
based on chi-square tail probabilities for the 17 equipment items con-
sidered. These values will be the bench marK against which all other
model fits will be tested (primarily since the probit and logit models
are well developed and widely accepted).

These fits for the probit and logit are not really very different.
This is somewhat expected since according to Finney the logistic and
normal distributions are "... scarcely distinguishable ... between re-
sponse rates of 0.01 and 8.99..." (Ref 15:406),

There is a method described by Chambers and Cox (Ref 8) which may

better discriminate between the logit and probit models. However, it

depends on having a few dose (MTBF) levels then performing a test which
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Table [

hi- re T3il Pr
for the Probjt

1lem

Bus
IMFK
CDRT
MFK
SMRT
MMP

Processors

ART
SLU
MPDG
MPDS
OEK
DSMU
HUD
INS
scu
MTU

abiliti

Table 11
Chi-Square Tail Probabjlities
for the Logit
1ten Logit
IMFK 9734
CORT .9728
Bus .9441
MPDG .9073
SMRT .8233
Processors .8241
MFK .8023
MMP 7119
SLU .43527
ART .4284
MPDS .3686
DEK .3417
HUD . 1434
INS .8448
DSMU 0449
SCU .8730
MTU .0487
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will determine the appropriate spacing of the dose (MTBF) levels for
this discrimination. Performing more simulations is impossible at this
time, hence this method cannot be used.

The vast majority of the literature encountered in this review was
in the biological sciences, and thus there was a propensity to find the
LD58. LDS8 is Known as the 5807/ lethal dose, or the median effective
dose. While this effort has no interest in the LD38 (LD@1 or less would
be more informative for design engineers) it is worth mentioning since
it brings up the matter of transformations.

Finding the estimates of B, and 02 for the distribution given by
Eq(2.3) is generally by means of the probit transformation of the exper-
imental results. "The probit of the proportion P is defined as the ab-
scissa which corresponds to a probability P in a normal distribution
with mean 3 and variance 1" (Ref 13:21). That is, the probit of P is Y,

where

. -5
P 20 V2 [ exp-(u2/2) du (2.7

This transformation from proportions to probits has the effect of
straightening out the normal S-shaped curve. Comparing Eqs (2.5 and
(2.7) shows that the probit ¥ is related to dosage d by the simple lin-
ear equation Y=3+(d-R)/¢ (Ref 13), and now to estimate LD3® you simply
find the value of d which gives Y=3. The usefulness of this transforma-
tion is to simplify mathematical calculations.

There are numerous transformation tcchniquos available (Refs 4, 4,
22) . They depend solely on the models used, the experimental data, comp-

utational considerations, convenience of their use, and ability to in-

13
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terpret results meaningfully.
A generalization of the probit and logit models is mentioned in an
earlier paper by Prentice (Ref 31) and completely detailed by Prentice

in a latter paper (Ref 38). This model takes the form of

Y
P(d)=f f(w) dw (2.9)

where y=(d-#)/¢ and B,0 are to be estimated. The pdf, f(w), has the

following form

FGwd= explwm) (1+expw (™™ (2.9
B(m,n

where $ is the beta function. The Jogistic model, Eq (2.4), is given by
m=n=1 and converges to the normal distribution as m,n9». Other special
cases for various m,n values are also given (Ref 30:742). This model
will be discussed more fully in Section IV where it is applied to the
sample data.

Note this model is really nothing more then a beta of the second
kind distribution with the transformation u=exp(w), 8Cu. To show this

note that
fCu)=f(w) |dw/du

(m+n)

= ™/rCew A(m,n)ul
= o™ Drctew) ™M pim 02
or a beta of the second kind.
14
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Quantit Analysis. In a paper by Copenhaver and Milke (Ref 11> a
new technique is offered for analyzing quantal responses, which they
call Quantit analysis. The underlying distribution is called the omega

distribution by Copenhaver and Milke and is characterized by a cdf of

F{x(q))=q (2.19

and a pdf of

fFOx(@r=1~-12g-1"*!
where 8(q(! and v>-1 , and where
q
x(q@=f dz/f(x(2)) (2.11
/2
As noted by the authors this distribution is a double exponential when
v=8, logistic when v=1, and uniform for the limiting case as v,

I1f we let P be the probability (or proportion) of response(s) at

dosage Xi and we let Pi=F(a+ﬁxi) then the tolerance distribution is

given by
v+l
f(a*ﬁxi)=l-l2pi-ll (2.12)
and
n vl
a+Px . =h (p.)=f 1/¢1-12z-1| ) dz (2.1
T

hv(pi) is termed the “gquantit” of pi(Ref 11:178). The computations to
obtain the parameters are similar to that for the model presented by
Prentice which is discussed in Section [V. Section V, however, will

discuss more fully the individual computations for the Quantit model,

15
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;E: and the application of it to our sample data.

‘:f i?f Aranda-Ordaz Family of Transforms. One of the reasons for first

{ .

e using the logit model in the analysis of binary data is its simplicity,
:; since the logistic transformation used to obtain the logit method is a
~

a2 linear function of the parameters.

"~ The logistic transform is simple, but is it adequate? Aranda-Ordaz
ijj (Ref 1) developes simple test procedures to determine both symmetric and
b asymmetric departures from the logistic distribution. He also develops
ot two families of power transforms which are alternatives to the logistic.
D \‘

f; These symmetric and asymmetric alternatives each include the logistic as
;; a special cases.

- The symmeteric family, which essentially yields the same results

<,

3; when working with either successes or failures (Ref 1:358), is given by
N ' .

- G Equation (2.14)

.:‘
A A
e Tx(O) = (2/0) [ 9 -(1-6) (2.19

X e c1-00%

:* and in the limit is the logistic when X=0 and a simple linear for »=1.
s

S: Now solving Eq (2,.14) as a function of T yields:

N

0 (AT =1

L 1%

e (= (1407/2) IA/721€ 1 (2.1%

< (v Y o VA
Q3 1 (AT 2 D
§I
N We assume that T has a linear expression in terms of
I some parameters associated with the explanatory var-

Y A iables considered in a specific situation... If we

. ™.

N .
=
iy 14
7S
4': \'\'5 - ..'.\ U ~)-...\‘,.\(\ - \..\*..\._\)-.._\'_ -_.\_,‘-..\ et e et R .:_.‘- ....... .. e “ar AR St




fit by maximum likelihood a linear expression for 7T
for a range of values of A we may consider the max-
imized log likelihood as a function of )\ and hence
derive not only the maximum likelihood estimate 4,
but also determine which values of & provide an ac-
ceptable fit. (Ref 1:358).

The aysmmetric model is given by the family (assuming log W(9)=T):

W, (8) = ((1-0) ST (2.16)

This is the logistic model when »=1, and again solving as a function of
T we get

1-C14x exp(m) 1A (n exp(1))>-1

(=
1 otherwise

The same assumption about T, and the same procedure as above is used to
obtain values for A.

There are tests (Ref 1:340-341) to determine if there are any sym-
metric or asymmetric departures from the logistic. The attractiveness
of these tests are that they can be conducted using "...(the values)
computed from the ocutput of the logistics fit." (Ref 1:348). Another
by-product of these tests, specifically the symmetric test, is that it
may permit "... discrimination between the logistic and probit mod-
els..." (Ref 1:3601).

The above models and tests will be fully discussed and implementted
in Section VI. In that section [ will try to discriminate between the

logistic and probit fits already performed by Dr. Barr (Ref 3).

17




.......

TYTTE LT b diul S un il el e S =i A A e Bt et it A 2 Tt S S B T S S SN AN R L Y

.............. AR A I A T U e e N R )

Time to Occurrence

According to Fishbein "The second type of dose-response modeling
that is receiving increasing attention deals with the distribution of
the ‘time to occurrence’ (latent period) and its relation to dose.” (Ref
17:1284) . Unfortunately the few models which were discussed by Fishbein
(Ref 17) and Crump (Ref 9 all had criticisms leveled at them by the au-
thors and others. Since these models are not well accepted, and since
(as in the multistage models) new interpretations of the dose-response
processes are needed this type is mentioned only for completeness.

In general this type of model could be defined as "the time of
death (abort) from the type of cancer (failure) of interest or as the

time of the first appearance or detection of a particular tumor type®

(Ref 17:1284), parenthetical matter my own.

-




) II1 The One-Hit Model 5

The simplest curve fitting technique, if we exclude drawing a line
between two points, is the simple linear regression model. The one-hit
25 mode! is nothing more than a linear regression model with a logarithmic
transform of the data. Regression is a well understood and straightfor-
ward technique, and as such needs no separate discussion, except for one
3 special consideration discussed later (regression through the origin).

I+ we assume that it takes exactly x failures (hits) of some item
to cause an abort for a particular MTBF (dose), where the failures are
i; independent, random events, then we can use the Possion process Eq (2.1)

to describe the probability of an abort. However, as mentioned before,

ﬁ if it takes only one failure to cause an abort then the general Possion
term collapses to Eq (2.2), or P(d) = 1-exp(-)\d) where A is the pro-
cess rate.

It is easy to verify that if P is small (P ¢ 8.1) then P(d)aad.
This implies that for small P a linear equation going through the origin
describes the data. MWhile our data is much less then 18%, it comes from
high MTBFs (doses). This situation is exactly the opposite of the usual
bio-assay problem where a low dose causes a low response rate.

Looking at Figure 1 shows that it makes no sense to force the Known
portion of the curve (solid line segment) through the origin. This is

% because this portion of the curve has a negative slope. If we flip the

curve around, as shown in Figure 2, then we might be able to force the

..................................

.........................................................
............

............
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Known portion of the curve through the origin and use the simple equa-
tion P(d)=xd. However, we cannot use this method since P is no longer
small and, hence, not approximated by xd. This is no handicap though,
since Eq (2.2) is not hard to apply directly.

Now if we let P be the proportion of non-aborts to launches then

@=1-P, and Eq (2.2) can be written as:

@ = exp(-ad) (3.1

and taking logs of both sides yields Lnq = -ad, or

-Lng = \d (3.2)

To apply this linear model! means forcing the equation through the

origin, since there is no constant term. The Control Data Corporation

Cyber 73580 computer implementation of the Statistical Package for the

Social Sciences (SPSS) (SPSS is widely available) allows one to force
an equation through the origin using the appropriate option (option 19
in the regression procedure. However, each of the correlation coeffi-
cients, R2 and adjusted R2, are unadjusted for the mean when using op-
tion 19, But, SPSS displays an extra line of output with these values
adjusted for the mean as suggested by Theil (Ref 34..74).

When forcing an equation throuéh the origin using SPSS one should
first determine the appropriateness of this option. In our case it
makes perfect sense, since we would expect to have a ‘continuous- abort’
for an MTBF of zero for any item which, by itself, causes an abort. An-

other item for consideration is the adjusted for the mean correlation

21
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coefficients, R2 and adjusted R2. [f these values should happen to go
negative then forcing the equation through the origin is not appropriate
(Ref 34:177).

After performing an initial regression on all 17 equipment items
(Appendix C), and observing that the correlation coefficients adjusted
for the mean were 3l| negative, a new approach was undertaken. In-
stead of using the MTBF the simple transform d’sLn MTBF was tried, or

-Lng=)ad‘salnd. [f we now solve for P we obtain:

Pa= i-(h> (3.3)

With Eq (3.3) note that the value of the MTBF can approach but not
equal zero. Since there is no reason not to allow the MTBF to equal
zero, at least in theory if not actual practice, | applied another sim-
ple transformation, really a translation. The translation was to simply

add one to the MTBF before taking logs, yielding:

P = j-exp(-\ Ln(d¢+1))

Pai-(atp) > (3.9

Besides letting the MTBF take on all non-negative values Eq
(3.4) has the property of being a known distribution, the Pareto distri-
bution, translated by a value of one.
Using Eq (3.4) and performing regression on all 17 equipment items

gave acceptable fits for all of the items. The determination of accept-

ability was by the usual methods; checking the F-test values, correla-
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tion coefficients, residuals, etc.

non-aborts) .

j~expl-.94420329
1-exp(-1.8278328
1-expl-1.0833338
1-expl[-.97313613
1-expl-.93994496
1-expl-.91812035
i-expl-1.1423878
1-expl-.90028411
1-expl-1.03337746
-expl-.92132193
i-expl-1.2435246
1-exp(~-1.21353849
1-expl-~.808418825
1-expl-.84067599
1-expl-.93728140
1-expl(-.84338133

1-expl-.974621068

Ln(d+1)]
Ln(d+1)]
Ln(d¢1)]
Ln(de 1) ]
Ln(d¢1))
Lndd+ 1) ]
Ln(d+ 1))
Ln(d+ 1) ]
LnCd+ )]
Ln(d+ 1))
Ln(d+1)]
Ln(d+1)]
Ln(d+ 1))
Ln(d+ 1))
Ln(d+ 1))
Ln(d+ 1) ]

Ln(d+ )]

Listed below are the equations ob-

tained from the regression procedure (remember P is the proportion of

Note the clear trend in the above equations for the coefficient

23

ART P=
Bus Ps=
CORT P=
DEK P=
DsMU P=
HUD P=
IMFK P=
INS P=

‘[ID MFK P=

o P P=
MPDG P=
MPDS P=
MTU P=
Processor P =
scu P=
sLu P =
SMRT P=

to cluster about the value of a=i.
git had no such trend for any of his coefficients.
t:}
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Determination of the Fit and Normality Assumptions

During the preliminary AEP analysis (Ref 24) there was a real con-
cern about the random number generator used in the AEP model. For a few
of the equipment items in Appendix C there appears to be significant de-
partures from the general trend. There is a way to determine if there
are departures, at least for the normality assumptions, when using re-
gression. This is by performing residual analysis, which is well ¥nown
and easy to perform using SPSS. However, for a detailed description of
residuals and residual analysis, the reader should see Theil (Ref 34).

The initial SPSS residual plots for the 17 equipment items indi-
cated that a few data points were possible ‘outliers’. But, further in-
vestigation using a t(n-2) distribution, since n was small in all cases,
revealed no real outliers. The residual plots appeared to show nc het-
eroscedasticity, or more simply the variance appeared to be constant. I
emphasize the word appear, since the residual plots had as few as six
points, and with so few points it would be misleading to state that
there was absolutely no heteroscedasticty. However, in general, there
were no significant departures from normality.

Tn determine how well this model compares with the probit and logit
methods | used the contribution to the chi-square tail probabilities, as

did Dr. Barr.

If the true probability of an abort for a given lev-
el of MTBF is Known to be p, and if the number of
launches is n, then the number of aborts has a bi-
nomial distribution with parameter (n,p); if n is
large then the number of aborts can be approximated
by a normal distribution with mean np and variance
np(1-p). (Ref 3:8, also see 14:229-230).

................
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£§ -:%3 Hence, if the normal approximation is good for the abort pro-
*.\ cess then the square of this will be chi-square distributed. That is,
\_: . 1/2 .

:} if we let x be the number of aborts then®...(x-np)/[np(1-p)]1 " “will have
S9!

. a normat distribution..., and so (x-np)zlnp(l-p) will have a chi-square
;: distribution...” (Ref 3:8). Note, if we have K levels of the MTBF the
o«
N
F;g chi-square distribution will have K-1 degrees of freedom (df). MWe lose
. one degree of freedom since we must estimate .

“
‘i‘% The above chi-square distribution, and hence the validity of using
I

A

o chi-square comparisons, hinges on whether or not the normal approxima-
1\ tion of the abort process is good. I bring up this issue since the

DAN

‘f: average p for our data is approximately .902, a very small value, and
-‘-'.

{3 this implies the underlying binomial process is extremely sKkewed to the
pee (ib right. Also the theory is for targe n, but how large should this n be?
s

>

;j Our n was, on average, approximately 5380; is this large enough?

ij There is an excellent paper by Raff (Ref 32) with some easy to use
;;_ graphs for determining the appropriateness of using a normal, Possion,
-
t:: etc. approximation to a binomial process. Unfortunately his graphs were
5:: of little help in our case since p was so small, and n extended beyond
o the range of his graphs.
‘;i I had to insure that the normal approximation of the underlying bi-
f?' nomial process was good, or the chi-square comparisons would be meaning-
\ less. However, the test for normality was simple. First, | generated

100 binomial random variables with p=.80029 and n=5300. Next I let

) y-(x-np)/[np(l-p))l/z, where x is the binomial random variate generated.
N T

o o
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o
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Then, using the Kolmogorov-Smirnov test in SPSS, | tested whether y was
standard normal distributed. The results were that I could find no evi-
dence that the abort process was not normal; hence, | could assume the

chi-square comparisons would be valid. The results of the one-hit chi-

square fit values is given in Table [II.

Table III

Chi-Square Tail Probabilities

for the One-Hit Model

I tem Probability
Bus .9584
CDRT 9543
MFK . 6789
SLU .9852
IMFK 4933
MMP .4438
DEK 39595
MPDG 2127
ART . 1984
SMRT .1313
Processors . 1270
MPDS .0450
INS .8187
HUD 0899
MTU .0020
DSMU .8007
SCU .00082

Comparing Tables I and Il with Table III it is seen that the one-
hit model gives a better fit for the SLU than either probit or logit.
Also the one-hit fits the CDRT and DEK better than the probit. However,
with the exception of the SLU, no item in Table I!I had a better fit

than that given by logit. Overall, fits using the one-hit model were

24
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much worse than those obtained by either logit or probit.

nclusjion nd R K

The one-hit method is simple and easy to use. Any analyst with
only a programmable calculator (and even many cheaper models) can per-
form linear regression. The methods and theory of regression can be
found in almost any elementary statistics text, as well as many other
places. However, the simplicity of the one-hit linear model should not
be the only reason for its use. [ found that while the one-hit model
fit the data well, in the regression sense, it did not fit the data well
by the criterion of the chi-square tail probabilities. More simply, at
least two other models fit the data better than the one-hit.

The one-hit model is a valid technique, since it is nothing more
than linear regression, but it is not the only technique. Any analyst
wishing to use the one-hit model should insure that it is the best tech-

nique for his/her situation.

27
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IV A Generalization of Probit and Logit

Previous sections indicate that the most widely used and explored
dichotomous response models are the probit and logit. In the literature
reviewed scarcely an article ended without some mention of at least one
of these models. However, discrimination between these two models is

often difficult.,

Some consideration (...Chambers and Cox [19471...)
has been given to the choice between probit and lo-
git models with the general result that extremely
large sample sizes are required to effectively dis-
criminate between the two. Little success, however,
seems to have been achieved in the development of
sensitive tests of fit for probit and logit models
or in the development of alternate classes of models
when the usual models prove inadequate (Ref 30:761).

Hence, the almost indistinguishable results of the chi-square fits for
probit and logit obtained by Dr. Barr (Ref 3) are not surprising (Refs
8, 16:4848). "This raises the question acz to whether tests based on more
specific alternatives may be more sensitive®" (Ref 30:742).

One method of a goodness of fit procedure is to embed the models
into a more general parameteric family of models and then test the spe-
cific models, using ordinary likelihood procedures, relative to the gen-
eral one. (Refs 7, 38). This is exactly what Prentice (Refs 38, 31)

does.

The Model

The probability of response (abort) for a given dose d is given as

Y
P(d Sff(w) dw 4.1

28
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where y=(d-H)/0 and B, ¢ are unknown and where the family is given by

$Cw) = explum (1 + exp w) (™™ (4.2)
#(m,n)

where P is the beta function, and m,n > 9,

If m=n=1 then Eq(4.2) is f(w)=exp(w)/(1 + exp w)2 or rewriting
the response P(d) = exp(y)/(]1 + exp y) , which is a logarithmic trans-
formation of the beta of the second Kind. Prentice (Ref 31), after some
reparameterization, shows that Eq(4.2) converges to the normal distribu-
tion as m,n9n,

Other limiting special cases are the extreme minimum
value (m=1,n-%) and extreme maximum value (m-,n=1)
densities ... other limiting distributions are dou-
ble exponential (m-9,n-8>, exponential (m=d,n-9),
and reflected exponential (m49,n%8) (Ref 30:742).

The density function given by Eq(4.2) is symmetric along m=n or
P(d) = 1-P(d). Equation (4.2) is alsoc "negatively skewed for m<n and
positively skewed for md>n" (Ref 30:762). Another characteristic of this
density is that it either has narrower or fatter tails than the logistic
depending on whether m>1 or m{1 respectively (Ref 7:1089). “Note that
[Eq 4.2) allows the choice between alternative models, such as the pro-

bit and logit models, to be reduced to the choice between values in a

singie model" (Ref 30:7462).
iong ¢ he Mode)

As was the case for the one-hit, and quantal response models in

general, the fitting of the distribution to the resulting sigmoid re-

29




F. sponse curve is based on the conditional probability of the number of

responses x given dose d, or:

b P(xld) = (:) PF-pn (4.3
;i where d is the dosage, n is the number of individuals at dose d, x is
"-

ih the number of positive responsgs, and P is given by the distribution

- function.

XY
N The likelihood function of Eq(4.3) is

I::;

k n\ % LFRe
L=/7 P (1-P) (4.9

_:: u' xi

.x'j:

n ‘[; Now suppose we have x; responses for ny individuals at dose di
«
Vﬂ ) i=l,...4ke Also let P(d) represent the probability of response at

;} dose di’ where P depends on 9 = (01""’°t)’ then the log-likelihood

- for 9 is simply

o *

* k
- | = eri log P(d,) + (n,~x.) log @(d)>]

*: izl

. where Q=1-P.

- The derivative s = d§/d® has jth component

e

¥ k

A di/de. = z:tx./P(d.) = (n,-x.)/Q(d.)] [(dP(d.)/de.] (4,9
A - i i i i J
,i: and the (j,h) element of the information matrix is

.

: k

v 3 tn./P(d.>0(d. )1 [dP(d.)/de.]) [dP(d.)/de, ] (4.6)
. £ i 1 i i J i h

o islt
1
- ,;; The information (Fisher information) matrix is the matrix of negative
-
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expected values of all second partials of the log-likelihood function or

- A
1,0 = -E (ftx10)

For more about the information matrix the reader is referred to DeGroot
(Ref 14) section 7.8, and Theil (Ref 34) section 8.4.

As noted by Prentice calculations for § and its derivatives are
simple provided P(d) and dP(d)/d9® are easy to compute. If P(d) is given
by Eq(4.1) then a convenient method for computing P(d, with underlying
density given by Eq(4.2), is 1(2; m,n)/B(m,n) where z=exp(y)/(1texp ¥
and I represents the incomplete beta integral (Ref 38:748). If we let

g?(u,c,m,n) then “the derivative of P(d) with respect to 9 has straight-

forward components dP(d)/di =d-lf(y) and dP(d/d¢ = d-lyf(y)' (Ref 30:

783) . However:

y
dP(d) /dm =/(d 1ogf(w)/dm) f(w) dw 4.7)
-
and also
y
dP(d)/dn = (d logf(w)/dn) f(w) dw (4.9
-®

may not have closed form solutions. Prentice suggests that "for any
fixed (m,n) a straightforward Newton-Raphson procedure can be used to
A A
compute Hril(m,n) and 3=3(m,n)* (Ref 30:743).
Performing the calculations for B and ¢ as functions of m,n are, at

least in theory, quite simple. First consider

/= (21,9_2) where _gis (K, and 2_§= (m,n)
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‘= ($,,8,) where 2= (df/dk,df/d® and 55° (d}/dm,dq dn)

2

2

Next partition the information matrix I(9) so that I11(°’ is the upper

2 by 2 block of 1(8). Next for fixed,gg *a Newton-Raphson procedure

-1

iteratively updates trial value’g? to 'g? +1 (6)-131, where 111(9)

1

and 3, are evaluated at .9-‘1) ’ gg until convergence to the MLE §1 is
reached® (Ref 38:744). Note that the asymptotic covariance matrix of

]
1(® evaluated at <§1,32>.

We now have a method for determining, by MLE’s, the parameters
(R,0) . However, as noted before, difficulty in calculating P(d) with
respect to either m or n hampers "the use of asymptotic likelihood
methods for simultaneous inference on all four parameters (K,0,m,n)"
(Ref 38: 786). The use of a grid of (m,n) values may overcome this
difficulty. That is, you maximize the log-likelihood for numerous
fixed values of (m,n).

There are some convenient three parameter submodels of Eq(4.2) for

which the estimation is more direct. The specific case of n=1 vields
P(d) = Lexp(y)/¢1 + exp y 1" 4.9
the derivative of which is

dP(d)/dm = P(d) loglexp(y)/(1 + exp ]

Now simul taneous inference on all three parameters (R,0,m) is easily
performed by a slight modification to the previously mentioned iterative

procedure.
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Computational Difficulties

In theory any of the above procedures, the grid search over (m,n),
the three parameter model, or even simul taneous solutions for all four
parameters are possible using a Newton-Raphson procedure, However, the
Newton procedure, in general, has problems of its own, * if the initial
starting point is ‘too far’ from a minimum, the method will not converge"®
(Ref 27:443). The problem of initial estimates is widely Known, but in
our case, as [ will explain, it is very evident.

In the article by Prentice (Ref 38) he applied the three parameter
model given by Eq(4.9) to some classical insect mortality data. The
model solutions for KR,0, and m were given and this gave me an excellent
chance to verify and validate my computerization of the model in Eq(4.9).
However, 1 soon discovered how sensitive toc initial starting values this
method really is.

I1f I fixed any two of three parameters (R,0,m) to the results listed
by Prentice and then varied the third, I found that [ could only change
this parameter by something less than 18%4. OGutside of this 184 range the
model ‘blew-up’. By this I mean that the computer ( a Control Data Cor-
poration Cyber 750) would either go into machine underfiow or overflow,
or when trying to invert the information matrix I found that the matrix
was ill-conditioned. These were just a few of the problems. Remember
this was just for gne parameter; the problem intensified directly with
the number of parameters varied. This presented a real problem since I
had no idea as to the values of K or ¢ for any given m within our sample
data, let alone the value for m.

My initial reaction was to do a search for m, incrementing it a

33
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Jittle at a time; this would only leave the problem of estimating ¥ and
d. But, as 1 socon discovered, different values of the shape parameter m
required different initial estimates for M and ¢. [t did not take long
for me to give up on this approach.

The next approach was the most costly with respect to time. The
approach was to systematically patch the computer code for each problem
encountered. [ inserted numerous error checks, put in bounds to prevent
computer gver/underflow, | even modified the technique such that if the
search procedure started to diverge, it would automatically move back
half the distance (towards the last good solution). Unfortunately, all
of this simply slowed down the divergence, but the results were the
same.

In hindsight the solution was simple. Since the problem was one of
finding the zeros of the derivatives of the log-likelihood function, !
only needed a routine that solved nonlinear equations. The solutions
from this routine would then be given to the Newton procedure as initial
estimates. After examining many such techniques | found one in the IMSL
package (ZXCGR) which worked well. It is a conjugate gradient algorithm
for finding the minimum of a function.

The conjugate gradient technique is much more forgiving for ‘bad’
initial quesses, but it too has limits for these guesses. So one more
technique was added to the chain of solutions. Note, if y’‘=atb In x =
(In x-R)/¢ then 1/b=0 and K=-0a, but y’=atb In x is simply the linear
regression model for the logit procedure. Using the regression coef-
ficients from the logit procedure, to obtain initial estimates for B,J,

for the gradient technique gave the best results thus far.

34



Results for the Three Parameter Model

The first step was to run a simple linear regression on the log-
linear equation for logit. Then, using the coefficients from the re-
gression, calculation of initial estimates for H,0 was performed and
given to the gradient algorithm along with an estimate of m=1. The
resul ts for 3,3,3 out of the gradient procedure were then given to the
Newton procedure. (See Appendix D for the computer listings for the
gradient and Newton procedures.) The results of the analysis follow.

In six cases (ART, INS, MFK, MMP, and SMRT) the initial estimates
out of the gradient search algorithm let the Newton procedure converge.
However, the estimates for 3,3,3 out of the Newton procedure were vir-
tually unchanged from those input by the gradient procedure.

The equation for the three parameter model is given by Eq(4.9,

A AA
where y=(d-K)/d. The values of R, 0,m for the six equipment items which

converged are given below, and the chi-square values are given in Table

v.

ART k=4 ,93807 ¢=.83589 m=.81631
DSMU H=4,.31593 o=,58913 m= . 00487
INS h=5,.2010846 o=.81942 m=.01643
MFK h=3,73742 0=.68732 m=.008448
MMP k=4 .8300% O=,720884 m=, 80344
SMRT k=3,3372 o= ,90229 m=. 85481




Table IV

Chi-Square Tail Probabilities for the
Convergent Three Parameter Mode!

Lltem Value
MFK .8344
P .7425
SMRT 7239
. ART .3871
W DSMU .2786
< INS 8456

o
;5 For the other eleven cases the estimates out of the gradient pro-
xi cedure caused the Newton procedure to diverge. Even though the esti-
o mates for 3,3,3 were not ‘good’ initial estimates for the Newton proce-
_£ dure they are listed below for completeness. The chi-square values are
‘: Q given in Table V.
: Bus H=1.42524 O=,484959 m=2.53973

:: CORT H=-,612943 O=.84179 m=3.83879

g DEK H=-1,77332 o=, 94971 m=10 74879

E HUD I=1,38298 o=.84383 m=1.20253
. IMFK H=- 85582 o=, 98331 m=1.081454

% MPDG H=-1,94282 o=,99172 m=2, 17789

MPDS H=-2,25281 o=1,82948 m=1.44834
§ MTU Wm-1,26420  0=1.18823  m=d4.74657

- Processors W=-1,29703  0=1.10081  m=5.73043

scu B=-1.83275 o=,87300 m=1.84555
SLU H=-,91622 o=1.15544 m=2,54579
N
)
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Table V

Chi-Square Tail Probabilities for the
Diverqent Three Parameter Model

[tem Valye
CORT .9483
IMFK .9343
Bus .9087
Processors » 7464
SLU .2918
MPDG 2747
DEK . 2279
MPDS .2173
HUD 8644
scu .0147
MTU .0041

For the items which did converge, using the Newton procedure, there
is a clear trend for the values of 3 to be close to 8 and for ﬁ to be
around 5. But, for those items which diverged,‘a is larger than 1 and ﬁ
is very small. (Remember M is actually an estimate of the dose which in
our case is the Log MTBPF) .,

Comparing Table IV with Tables I and II it can be seen that only
one item, the DSMU, had a better fit under the three parameter model
than either logit or probit provided. Two other items, the MFK and MMP,
had better fits than with logit. All fits were worse than the probit
except the DSMU.

Looking at Table V shows that all of the items had worse fits than
that provided by the logit, and most had worse fits than the probit.

But, these items were the divergent ones and their fits are questionable

anyway.
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{ The technique offered by Prentice is interesting to say the least.
?Eg It contains within its family both the logistic and normal distributions
gis which are so often used. Prentice offers a standard score test to exam-
) _A ine the fit of the logistic and normal models which is more sensitive
;Eg than the usual chi-square test of fit. This test is based on the asymp-
fi;: totic distribution of g’=(df/dm,df§/dn) evaluated at (m,n).

~ However sensitive the above test may be the computations for it

i&; depend on convergence of the Newton procedure so that the information
?}é matrix may be obtained. Yo must also reparameterize as m and n ap-

:TE‘ proach infinity for the normal model. But, I must admit, this is not
EEE really a drawback if you have good estimates of B and ¢.

ES& The application of the three parameter model did not give better
t‘ﬁ; GEB resul ts than those obtained by the more familiar probit and logit meth-
iig ods, except for a few items noted previously. Even for these few items
!EE? the computational techniques were extremely more complex and time con-
‘a;4 suming. However, this does not imply that the technique must always be
% so difficult,

.

LA
[N
3

1 feel that a future effort, dedicated to computerizing the entire

family, would be useful. There were many numerical techniques (Refs 23,

Detr

25,27) which I did not investigate, due to time considerations, which

it
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L".nlu.ll
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may have been useful in overcoming the computational difficulties which
I encountered.
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20 The Model

e a
O B

;.t'l‘

Copenhaver and Mielke (Ref 11) give another family of distribu-

tions, analogous to that of Prentice (Ref 38). This family is desig-

e

4

nated as the omega distribution. The cdf of this distribution is

N S o

l‘-.“,l

o F(x(q@) = q G.0D
3

e its pdf is

)
o #x(@) = 1 - 129 - 1 V! (5.2

34
{;] and
'l..‘
B @ x(Q) =ﬁf<x(z)>]" dz (5.3)

Xl ; /2

'.;';i

?} where 08(q(i and v>-1. As was the case for the family given by Pren-

'f tice, this family has embedded in it special cases. "In particular,
:% this distribution is a double exponential when v=08, a logistic distribu~-

o

;: tion when v=i, and a uniform in the limiting case as v+#" (Ref 11:177).

Lo

: That is, for v=i the pdf is f(x(q))=4q(i-q) , and

\
- x(@ =/ 14z(1-017! dz = (/4 l0g(q/1-)

i\ 2

or the logit of Q. This yields the logistics density function:

3 , |
D) F(x) = 4 exp(4x) [1 + exp(dx)] 1
"

- ;
Qi’ For v=@ the double exponential density function is f(x)=exp(-2ix]),
i |

b S |
RO and for v4e the density is f()=1 for -1/2(x{1/2. |
>

N

o

") |
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Note that the symmetric distributions of Eq(4.2) (e.g when m=n)

given by Prentice are approximately the "...subset of omega distribu-
tions where 8(vw{2" (Ref 11:178). But, as can been seen by Eq(5.2), the
omega distribution includes no asymmetric distributions.

The likelihood function for quantit analysis is the same as that in

Eq(4.3, but now

c&ﬂxi
Pi=f f(t) dt = F(a+Pxi)

Thus, the tolerance distribution is given by

flardx,) = 1-|2Pi-1|"”

and

i
atPx. = h (P.) =f 1/(1-|2z-1|"”> dz (5.9

where hv(Pi) is termed the "quantit® of Pi'
tation he Mode!

*The computational procedures for obtaining ML estimates of param-
eters a,P and v (&,3,0) consists of an efficient search routine for de-
termining C' (Ref 11:178). The calculations are identical to that for
Prentice (see Section IV), however; the procedure is more tracktable
since the numerical calculations are simpler, due to ‘nice’ functions.

The procedure starts at vo=i{ and continues until 0 is of the de-
sired accuracy or 3 exceeds 28, °If v is 28 or larger, there is very
little difference between the omega distribution and limiting uniform

distribution...” (Ref 11:178). For the initial value of v0=1 yse as
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initial estimates of a and P the least squares solution of the equation

Chatianns 157

hv(P) = atfx, where hv(P) is the observed quantit corresponding to the
proportion of observed responses s, at dose x, to the number of trials
at dose x.

The derivatives of the log-likelihood and the elements of the in-
formation matrix are calculated exactly as in equations 4.5 and 4.6 re-

spectively. However, for the omega model with Pi-F(a¢Pxi) the deriv-

atives with respect to the parameters «a,$ are

dP/da = f(a+8x)
and

dP/ds# = x§(a+Px)

So, if you have the jth iterative estimates of aJand FUand (j-Dst it~
erative estimate of % then the Newton-Raphson procedure yields the jth

estimate of Pi' The (m+1)st iterative solution of Pi j is given by
?

P o B a2t 1 Stas Bix - b (P
1J 1J 13 J J 1 v

and since we can write Eq(5.4) as

G(PiJ) = aj+ﬁjxi— hv(PiJ) =8

and
6°(P. ) = =(1 - j2p, - 1V*H}
1J 1)
hence
P = b, 6P /6 P
1J 1J
41
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Since the functions, and thus the above equations, are *well-behaved"
the 2 by 2 information matrix never had the problems that I encountered
with Prentice’s model.

The only computational difficulty arises from the need to calculate

the quantit hv(P)' Copenhaver and MielKe initially used the infinite

series given by

@ .

h(P = 5§ 2pey )t (V4D

v 2L itviD+1
150

where
1 P)1/2
g§=( 8 P=1/2

-1 P12

"Whenever v21 and [2P-1|<(8.9, the ... series converges rapidly. In
fact... the maximum error will be 180-% when the first 38 terms are sum-
med®" (Ref 11:1184). However, when v(i or |2p-1| is close to one (as in
our case) you sum for an ‘appropriate’ number of terms and then add a
remainder. The remainder is in the form of a continued fraction. "The
continued fraction converges slowly when either v is near -{ or |2p-1]
is close to one" (Ref 28:222). Magnus et, al, (Ref 28) develop a closed
form expression for the sum of an infinite series. Copenhaver and Miel-
Ke adopted this latter technique in their computerization (Appendix E

contains the source code as written by Copenhaver and Mielke).

f_th tit Analysis

The values obtained for a,# and v are given below for the 17
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f(a+Px) is the tolerance distribution.

equipment items, where mﬁxi- hv(P) as given by Eq(5.4), and

ART v=19.00 a=-.37444 P=- 02797
Bus v=20 a=-,.333543 P=-_03340
CORT v=-,90 a=9.05474 P=-5.91737
DEK v=-,98 a=8.40762 P=-5.23144
DSMU ve=29 a=-,37873 P=- 02647
HUD v=208 a=-.35067 P=- 02975
IMFK v=-.98 a=1.469579 P=-5.06704
INS v=29 a=-,37294 P=- 02458
MFK va29 a=-.40407 P=—,02475
MHP v=20 a=-,39221 P=-,02368
MPDG v=20 a=-.44213 P=-,02424
MPDS v=29 a=-.44539 fm—,02371
MTU v=-,98 a=8.45194 P=-4,19618
Processors v=-,98 a=8.44919 p=-4,48845
scu v=29 a=-.35513 p=-,02874
SLU v=-.98 a=4.63052 £=-4,38218
SMRT v=?.50 a=-.38000 P=-,05270

...................

The value of 3 for all of the above, with one exception the SMRT,
is either -.9 or 28. These results are somewhat surprising, since for
those items with Y=-.9 the tails are very heavy. The clear implica-
tion is this; an item with a parameter value of -.9? for v has a very

narrow band of critical MTBFs. For MTBFs below this narrow band the
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item will always cause an abort and for MIBFs above it the item will

never cause an abort. Considering that the proportion of aborts is very
low in the sample data, and somewhat linear (flat), this is surprising
indeed.

Now looking at Table VI and comparing these chi-square values with
those in Tables I and Il for probit and logit respectively, it is clear
that the quantit method gave consistently better fits than the probit.
With only two exceptions, the MPDG and the MTU, quantit also gave better

fits than did logit.

Table VI
Chi-Square Tai) Probabilities
for Quantit
1tem Value
IMFK 9915
CORY «98446
Bus .9778
MFK 9162
SMRT - .8788
Processors 3781
MMP .8271
SLY . 3994
ART .3738
MPDG .4929
DEK 4499
MPDS .3974
HUD 2111
DSMU . 1893
INS . 1488
SCU .0815
MTU 8253

lysion nd R riks

This method of quantal analysis appears to have been better than

all of the preceding methods. 1t gave consistently better fits than

44




probit, one-hit, and the generalization of Prentice for all 17 equipment

items. It also had better fits for 15 of the 17 items than did logit.

I found that quantit analysis was quite easy to implement and un-
derstand. The computer code, given to me by Mr. Copenhaver, would be
‘easy’ to modify to attain any accuracy of the parameters needed. It
should be noted that the code contains a subroutine to perform probit
analysis (logit is a by-product of the program; v=1 is the logit and is
always output).

1 would recommend that a future effort consider modifing the code
so that instead ot doing fixed iterations on v, it performs a simulta-
neous search for all three parameters a,f and v. However, this would
then have the same sensitivity problems as Prentice’s model. | would
further recommend that Prentice’s model be incorporated with this code,

thus; giving a more comprehensive analysis tool.
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VI Two Families of Transformdtions

Previously the logistic model has been a special case of all the
other modelis. As a matter of fact, the determination of how well these
other models performed has been a comparison of them against the logis~
tic, via chi-square tail probabilities. However, the logistic model is
only a tentative model and we need to look at how adequate it is. "I+
we can find a procedure which detects inadequacy, and also indicates the
Kind of desirable modification to the model, this is potentially useful®
(Ref 1:357).

Mr. Aranda-Ordaz (Ref 1) gives us two families of models which help
achieve the stated objective. These families each contain the logistic
and alternatives as special cases. These models each have an associated
transformation which model symmetric and asymmetric departures respec-
tively from the logistic. Symmetric transformations are such that they
lead to “...essentially the same answers if successes and failures are

interchanged" (Ref 1:337).

Th tric Family and Associat Test

The symmetric family of alternatives to the logistic is given by

T, () = (20 o™ 1—0)") (6.1)
o™+ (1-9

where @ is the probability of success and A is the transformation para-

meter. If we let TX(9)=A+B Ln x and then solve Eq(é.1) for 9 as a
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function of T we then obtain

(o

A/261)
oD = 4 etz V> 721 <1 (6.2
a2 Ve vy VA
\ 1 (NT/22 1)

Note that £q(é.1) "...reduces to the logistic transformation in the
limit when 2=0 and to the linear transformation when 2=1" (Ref 1:358).

Another feature of Eq(4.1) is

TL(O) = -Tx(l-e) 3 TX(O) = T_X(O)

or the treatment of successes and failures is symmetric.

As is the case for all quantal methods the underlying process is
binomial and the liKelihood function is the same as that in Eq(4.4).
The systematic part of the model is given by T=X8,.

If we fit by maximum likelihood a linear expression
for T for a range of values of A\, we may consider
the maximized log likelihood as a function of X\ and
hence der}ve not only the maximum likelihood
estimate A\, but also determine which values of A
provide an acceptable fit. (Ref 1:358)

Since it was presumptuous to assume the logistic as the model it is
Just as presumptuous to assume the symmetric will yield, via MLE, any-
thing but the logistic model back. Hence, before proceding with maximum

likelihood estimation of A, we need some test to determine if there are

indeed symmetric departures from the logistic model. The hypothesis we

47




B "
e L A

>,

%

. want to test is H: »=80.

':j < If we consider the parameter vector £ as a nuisance parameter, and
{“ replace it by its maximum likelihood estimate under A=8, then the test

N

>

:} statistic is the efficient score U(M=dl/dA. UV vanishes at »=8, but
:i after some reparameterizing, the score takKes the following limiting

o form:

..': m A

W = =N, . 3 .
U iz-:l(rl n9T¥/12 (8.3
L \! “

A where 6i=1/(l+exp(—1i)) ’ Ti is the logit equation, riis the number of

responses, and n; is the number of trials.
Since Eq(é.3) is distributed asymptotically normal (Ref 14:343) the
test may be carried out with the standardized form of Eq(4.3). The re-

Jection of H: A=8 is for large values of the test statistic. The

- ARPANAP: - | BN

®

variance of Eq(4.3) is given by

- - _ -1
- In(e) = Ixx prlpplpx (6.4
bibi . . ,
where xxx’lxﬁ’lﬁﬁ’ and Iﬁx are the partition submatrices of I, Fisher’s

s a €«
n.. -.‘ IA:I,.I" A,J.‘

information matrix (see Section IV, in particular Eq(4.4) for more, or

DeGroot (Ref 14) section 7.8 ). The individual components are

.
y
3 m
p I, = Znidirf/um
{ isl
= m 3
Pd -
% is)
-:\
: m
5 lgp= z:nidixsxr (PyS=1,.00yP)
o, e s r sl
- a8
»'.'
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A
where di= 91(1-3i), and p is the dimension of B. In our case this di-~
mension is 2 and the X4 vectors are the unit vectors, Note, *All values
required to perform the test may be computed from the output of a logis-

tic fit" (Ref1:368).

The A tric Family and Associated Te

The asymmetric family of alternatives is given by

W) = [(1-0 >

-13/)\
and

log W(OY=T or exp(9)= W(9) (6.9

where T is linear as before. Again if we solve for © as a function of 7

we obtain:

1- (1erexp(m) V2 Ovexp(D >=1)

(N = (6.6

1 otherwise

Equation (4.9) also contains special cases, specifically for ax=1 EQ(4.D)
reduces to the logistic and for \=9 we get the compiementary log log
model .

One must be careful when using this family since it does not treat
successes and failures in a similar fashion. °*There are situations
where it is desirable to treat successes and failures asymmetrically.
Yates (Ref 37) gives some examples® (Ref 1:358).

Just as for the symmetric model the underlying process is binomial

and is as described previously. The procedure is to maximize the like-
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lihood, aqain just as for the symmetric. We also develop a test statis-

Taa
’,

tic analogous to that of the symmetric. The hypothesis is now, however,

]
-

H: A21. The test statistic is given by

m

UeD -Z(ri-n.ei> (8, +10g(1-0.)) (6.7

Y
i=1 1

where Oia oxp(Ti)/[l+exp(Ti)J.
The variance is given by Eq(4.4), but now the individual components

are

m
2
I, =i2::lni(6i+log(l 0,) “/exp(T,)

m
l”s = izq:(eiﬂog(1-91))nixs(1—ei) (5=1y00e,p)

m
Igp= Z:nixsxroi(l-ei) (Fys=1,000,p)
s r =l

again p is the dimension of B. This test also requires only values from

the logistic fit. The rejection of the hypothesis is for large negative

vt

values of the standardized statistic.

R
.-

Computational Procedures

The calculations for both the test statistic U()) and the two fami-
lies are straightforward. The calculations for U()) where explicitly

given in the previous paragraphs and no further explanation will be giv-

£ - \doeapon; Yo

en here, except for one small discussion.

[l

%

}j It is common practice to use weighted least squares procedures when
o

2 performing logit. While Mr. Arand-Ordaz does not explicitly state that
E? f%:3 he uses weighted least squares I will assume that he did. The reason

s

el
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for weighting in a least squares procedure is that the assumption of ho-
moscedasticity (constant variance) may not be justified (Cox (Ref 12)
section 2.2 and Theil (Ref 34) section 4.2). The assumption of homosce-
dasticity is one of the key assumptions underlying all regression analy-
sis, and must not be ignored. However, for all quantal analysis, since
the underlying process is binomial, weights are easily obtainable. Since
the variance of a binomial distribution is npq, it makes sense to use
this as the weighting coefficient, which is what I have done. This is
also what Dr. Barr (Ref 3) has done and what is suggested by Finney (Ref
19 .

The model calculations, as | said before, are straightforward once
you have determined if there are symmetric or asymmetric departures from
the logistic. First for a fixed A calculate the value for Eq (é.1) or
Eq (6.3), for each level of the stimulus (MTBF). Next using these val-

ues perform a2 least squares regression to obtain ﬁo and ’1 the regres-

sion coefficients. Then, using this regression equation, calculate 8(1
in EqQ(é.2) or Eq(8.8). Finally, using the values of 9(1 just calculat-
ed, determine the value of the log likelihood function. Since you are
trying to maximize the likelihood function the value of A that yields
the largest value of the likelihood is the MLE estimate .

Note, one would normally only apply one of the two families if the
test statistics indicated a rejection of the null hypothesis that the
distribution is logistic. However, for comparison purposes I calculat-

ed the MLE for all 17 equipment items for both families.
Resul ts for th i )

Given in Table VII are the results of the normalized test statistic
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computed from Eqs (&8.3) and (6.4), and listed in ascending order. Also

listed are the MLE values for X\.

Table VII

Values for the Symmetric
Test Statistic and MLE

Lltem ~Statistic >
IMFK . 9809 9.
CORT 2.8299 8.
DEK 2.4989 e.
SMRT 2.8950 8.13
Processors 2.9858 8.
MFK 4,1348 9.32
Bus 5.0072 8.
ART 5. 1847 8.18
SLU 4.89353 8.
INS é6.1689 0.22
MMP 7.2325 0.33
DSMU 10.3723 8.32
MPDS 13.4603 8.24
HUD 14.4488 8.42
MPDG 15.4428 8.33
SCuU 29.672% 6.88
MTU 35.86881 8.

Comparing the order of Table VII and Table I! (logit) it is inter-
esting to note that the order is somewhat the same, particularly for the
tops and bottoms of the tables. This is what one would expect since, as
the logistic fit becomes worse, the test statistic should indicate de-
partures from the logistic.

Remember the null hypothesis is H: »=8, or the distribution is not
different from the logistic. Therefore, the test indicates whether or
not there are symmetric departures from the logistic. The values of 3,
in Table VI1, are fairly consistent with the expected results as indi-
cated by the test statistic.

I am sure you have already noticed that the values of the test sta-
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tistic are larger than one would expect for a standard normal distribu-

.‘:.' thﬂ.

This could be due to the underlying distribution not being logis-

tic or even shaped liked a one, but something completely unrelated to

the logistic.

ted by the family in Eq(4.1) at all.

departures is not valid.

Indeed, the underlying distribution may not be represen-

[f this is the case the test for

This may also explain the zero values for A\

for those items with very large test values.

value, for all

X \..! ...f' LS P ‘1.‘.11 ‘!A;'
. »

Listed below are the equations for T, attained at the respective A\

IMFK
CORT
DEK
SMRT
Processors
MFK
Bus
ART
SLU
INS
MMP
DSMU
MPDS
HUD
MPDG
Scu
MTU

17 items.

T= -.88418
.49617
«34701
«84771
.56903

1=~1,98938

= ,.13686
1= -.39222

1= .08023

1= -.57526

T=-2.82101

T=~1.48329

=~3,33997

1=-2.18344
1=-2.02101
1=-2.12457

T= -,74331

» v
------

1.88979
1.16095
1.01782
.71811
.89628
.44583
1.00295
«78387
.84837
.49038
.37681
.47681
.488353
. 13002
.37681
.81772
.66784

in x

In x

In x

In x

In x

In x

In x

R
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b
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Listed in Table VIIl are the chi-square values for the fit of the
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17 equipment items using the symmetric family. The values are listed in

descending order. Comparing the values of Table VIII with those of Ta-

L

ble Il the order is essentially the same. However, there is an increase

in the value of the tail probabilities in Table VIII for those items

> %
Lt

which di<d not have an MLE A=8 (remember if X\=@ these items are fit by

AV R ALY

NN

the logistic, hence, the same as Table I1>., There are three exceptions

however. These exceptions are the SMRT, ART, and INS, but their tail

values (Table VIII) are almost identical with those for logit in Table

. I1.
Q Table VIII
Y
B Chi-Square Tail Probabilities
e for th ric Famil
- 1tem Value
@ IMFK .9754
- - CORT .9728
e Bus 9641
e MFK .9389
o MPDG .9073
MMP .8241
. SMRT .8247
i Processors 8241
-r',:j MPOS .4873
;".\‘ ART .4592
.;:. SLU .4527
> DEK .3617
) - scu .3107
I HUD .2148
o DSMU . 1844
N INS 0799
e MTU .0487
Z
e
o
-‘_.4
o for t ric Famil
.-_‘:4
's' - Table IX lists the results of the normalized test statistic com-
2 A
2
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{I puted from Eqs(4.7) and (46.4), and are in ascending order. Also listed

; :.\ .

o e are the values of the MLE A,

! |
; Table IX i
" Valyes for the Asymmetric ‘
- Test Statistic and MLE ?

N4

Item Statistic ..
DEK -1,2743 -138

‘. CORT - 75989 -148

22 Processors - .5034 -8

o IMFK - 2972 ~-247
ey Bus - .0447 -781

SMRT . 1812 20 ‘
2, SLU . 1970 -147
& MFK .815§ 227

1 MPDG .7758 -1789 |
. HUD 1.1261 519
= MTU 1.3483 -531

MMP 1.4385 325
- ART 1,5993 é1

”} INS 3.1261 59
. Scu 3.40855 34990
Y DSMU 3.7158 223

Y 0 MPDS 4.9449 839

‘}‘ )

2,
b
O]
-
. The theoretical null hypothesis in this case is H: x=1 ,or the

N logistic. Therefore, for large values of the test statistic you will
L3

W reject the null hypothesis. However, Mr. Aranda-Ordaz indicates that
A)

5 you will reject only for large negative values. This implies that the

2 working hypothesis is really H: A21. The reason for this is clear;

'i since we are interested in asymmetric departures from the logistic we
N are really interested in values of X\ significantly less than one. MWhile
i values larger than one are also acceptable the distribution starts to
;‘ lose its asymmetry and becomes more symmetric looking.
= I1f, as | said before, I were to go by the test statistic value, as
N A an indication whether or not to proceed with the asymmetric model, I
: ~
! )
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h-'xq:,
3;3 would not proceed. [ would be hard pressed to reject the null hypoth-
,ﬁE N esis H:a21 for any of the items, except possibly the DEK. But, since we
{
::5? are interested in how well the over all asymmetric model! and test
D ‘. . N
‘:}; perform for our data I continued, and obtained the following equations
e
at for T. Again these equations are attained at the MLE X given in Table
'.::' Ix .
-:_:
! l:;:n
-
‘.',\.‘
DEK ™==-1.74791 - .72424 In x
at CORT 1= -.99838 - .94095 In x
N ._'-;.
K- Processors 1= ,22093 - ,.85741 In x
Ty
. IMFK T=-2.48298 - .77771 In x
l' -
:;i Bus T=-2.24865 - .75122 In x
N
:2: SMRT = .93780 - 1.89028 In x
o e SLU T=-1.71897 - .62746 In x
N
o MFK 7= 3.81833 ~ 1.45962 In x
¥ .Qx.
T MPDG 1=-5,44571 - .45458 In x
'( -
. HUD 1=12.85099 -~ 2.44824 In x
o MTU 1=-3.93067 - .34990 In x
Bl
-, MMP 1= 3.9703%9 - 1.39584 In x
_ ART 1= 1.66151 - 1,16937 In x
-t INS T= 2.82577 - 1.17678 In x
) scu 1=56.15579 - 7.87826 In x
- DSMU T= 5.40588 - 1.47762 In x
o MPDS 1= .36738 - 1.17884 In x
f;:
1_: Table X contains the chi-square tail probabilities for the fit of
o
N
.
-
M S5é

...................
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the data using the asymmetric family.

tables these also are listed in descending order.

almost identical to that of Table VIIl and also Table II.

As with all previous chi-square
Note, the order is

With four ex-

ceptions these tail probilities are better than those in Table VIII,

hence, better than those of Table lI.

SMRT, SCU, and HUD.

The four exceptions are the MFK,

Comparing the tail values for these four items with those in Table

VIII shows that while the symmetric was better it was not significantly

better. The only item of the four which was not relatively the same as

the logit fit, in Table 1I, is the SCU.

For the SCU both the symmetric

and asymmetric models gave chi-square values more than four times larger

than that of logit, a marked improvement.

Table X

Chi-Square Tail Probabilities
for the Asymmetric Family

ltem
CDRT
IMFK
BUS
MFK
MPDG
MMP

Processors

SMRT
MPDS
DEK
ART
SLU
DSMU
SCU
HUD
INS
MTU

Value

.9934
9934
9779
.9208
.7208
.8427
.8414
8223
.+ 7623
6693
.5008
.4928
+3857
.3068
. 1954
. 1182
.0828

One last interesting note concerns the test.

57
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the asymmetric test, with the intention of only applying the model if
‘3f‘ indicated by the test, the only item [ would have tried to fit would

have been the DEK. And, for this single item, I would have found an

almost two-fold increase in the chi-square tail probability. But, I

would have missed improved fits for many other items.
nclusions and RemarKs

I feel the numerical calculations which I performed are correct and
accurate, for both the test statistic values and the models themselves.
However ! would be less than honest if I did not report the following
discrepancy.

Mr. Arand-Ordaz applied the asymmetric test to one set of sample
data. This data has a point where the responses are the entire sample

(e.qg. the number of insects Killed equaled the number exposed to the

‘ ‘[) chemical stimulus) (Ref 1:342 table 4). How he treats this point was
ég not indicated. This point is a problem, as a matter of fact any point
Ef where all or none of the subjects respond causes problems. There are
. many schools of thought about what to do with a point like this, but the
EE standard seems to be to replace p=s/n by p=(s+.5)/(n+1) (Ref 11:178).
§§ However, if one does not use this method than something very similar to
it is usually suggested.
i With the above in mind I tried several different methods, but could
'S never attain his fitted values as stated (Ref 1:342 table 4 for the lo-
= gistic model. 1 could get very close using the SPSS regression proce-
;; dure to perform the logistic fit, but never close enough to satisfy my-
;: self. Normally I would chalk this up to not knowing how Mr. Arand-Ordaz
s treats the problem point. However, to calculate the test statistic you




S need the logistic fit. And, I could not duplicate this either, at least
without “"cheating” as I will explain.

Mr. Aranda-Ordaz (Ref 1:342) reports a test value of -2.746 for the
asymmetric statistic. Using the closest logistic fit I could attain
(compared to his) 1 could not get this value (remember this value is

obtained by the standardized form of U()), which has a mean of zero and

1%

5: variance as given in equation 6.4. However, I could get his value if I
EZ divided U(D not by the standard deviation, but by the variance. Since
N the equations (4.7 and 4.4) are easy to calculate and verify, and since
é the SPSS regression technique is valid, I am convinced that the value

- of -2.76 is wrong as reported by Mr. Arand-Ordaz.

X These two sets of models were relatively easy to apply and they in-
5 corporate some of the same calculations required in Sections III and IV.

Hence, these models could easily be incorporated into a larger computer
package which included the families given by Prentice ( Ref:31) and Cop-
enhaver (Ref 11). The three families together include the logistic (lo-
git), normal (probit), and numerous symmetric and asymmetric alterna-
tives. A comprehensive quantal assay computer package has much poten-

tial for use in many areas other than bio-assay

P P B

-

59

‘I
f
’
v
04
¢

»

-

.'-‘-- - -\- W "-'_-.“. -.-\.'. R RS .-.;_ \_-;_-.:'. - _- CABADAAAS '_q:;.'..‘:_. .-'.:\‘»'.‘-\.-'.:‘. e

......




..

5
RN S

4 4 4k
B el

L]
el

.......

MEAIE A AL AL AR AC AT e R e SR ST A A A R AP A R I A T T A e

Appendix A

Description of the
Avionics Evaluation Program
EP Model

The Air-to-Ground Mission Analysis (MAP) submodel of The AEP evalu-
ates the performance of a flight of up to four aircraft on a mission
which may involve multiple targets, multiple search passes, and multiple
attack passes. The aircraft proceed along an externally generated nomi-
nal trajectory through the mission phases of takeoff, navigation to the
search area, search, attack, and return to base. Monte Carlo techniques
are applied to mean-time-between-failure (MTBF) data for the defined a-
vionics throughout the mission to determine which subsystem modes are
functioning, restoring to back-up modes, and mission aborts as required.
Target location uncertainties and navigation system performance parame-
ters are combined to define the actual flight path relative to the true
target location. The sensor ground swath for the defined search pattern
is then compared to the true target location to determine if the target
passes through the sensor ground area coverage. Probabilities of de-
tection, target kill, and aircraft survival are sampled to determine

which mission phases are successfully completed. The model utilizes the

‘best mode stil) available for each function at the time it is to be per-

formed.
The MAP includes a detailed model of the ground turnaround process.
Preflight, thruflight, postflight maintenance, ordinance arming/loading,

refueling, scheduling, and launch are modeled in terms of time require-
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ments and event uncertainties.

Prior to launch of the first sortie of the day, the model sequenced
each aircraft through preflight maintenance and ordinance loading. Dur-
ing the maintenance interval equipment items are repaired and *time-to-
repair® is recorded. Prior to launch of subsequent sorties, the model
sequences each aircraft through ordinance de-arming, thru-flight mainte-
nance, refueling and ordinance loading. Repair and loading times are
recorded. Upon completion of the last sortie of the day, the model se-
quencies each aircraft through ordinance de-arming, post-flight mainte-
nance, and refueling for the next day.

The launch subfunction represents the interval between engine start
to takeoff. At this time, an additional equipment check is made to de-
termine additional failures. To determine these launches the sortie
scheduling algorithms utilizes user supplied data to manage the starting
time for individual sorties on sequential days.

The preflight, thruflight, and postflight maintenance times are
based on mean duration time input data. Ordinance loading, arming and
de-arming times are determined in a similar manner. Refueling times are
based upon an input refueling rate (Ibs/min) and aircraft fuel storage
capacity., The model calculates fuel utilization for each sortie to de-
termine additional fuel requirements.

In addition to ground preparation and ground ma;ntenance, the user
must also define the in-flight mission functions along with their var-
ious parameters (e.g. nav accuracy, drift rates, ect.) and their associ-
ated suites of hardware and the hardware reliability and maintainability
parameters. The in-flight functi-ns are navigation, navigation update,

communication, target acquisition, weapon delivery, general flight, tar-

é1




get, and survivability. Note that each of these functions have numerous
o subfunctions (e.g. navigation has radio-aided nav, and self-contained
nav subfunctions).

Once airborne, an aircraft must have one of two navigation func-
tions working and the communications function working or the aircraft
will abort. The other functions which will cause an abort are the tar-
get acquisition, weapon delivery, and some of the general in-flight
functions. This latter function is one that can be used to determine

additional abort conditions.
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ifi Appendix B

NN,

[ ' Description of Mode Regression:

e Abort Logic

For the single aircraft mission simulation the concept of mode re-

'{2 gression and the abort process is straight forward. For each mode with-
EE in each function, two things must be defined; operating or performance

: characteristics, and a suite of hardware items (which also has a set of
%

j{k parameters reliability and maintainability) needed to perform that oper-
D ation (mode) within the function.

L; Consider one of the functions that will cause an abort if al! modes
;35 fail, This function has say 18 modes and within each mode a suite of
.

:{: hardware items is defined. If one of the hardware items fails in mode 1}
“_ CED then the aircraft regresses (moves) to mode 2; you can think of this as
;:j either a bacKkup mode (e.g. redundant aircraft equipment items may have
f:; been defined in this mode), or a degraded mode with degraded perform-
.L ance characteristics. Now if a crucial hardware item fails, that is one
“

N e,

}: that is needed by all modes, or if enough hardware items fail such that
XN

- you have regressed through all modes, then an abort will occur. Mode
e regression starts at the best possible mode and regresses to the less

ii desirable modes.
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Appendix C

Sample Data

The following is a list of the 17 equipment items considered for
analysis, and the raw data generated by the AEP.

'0’ats

ART - Avionics Remote Terminal

LR

)

é4

MTBF Launches Attempted Total Aborts
3000 9370 2
2008 5354 é
1508 5378 3
1900 9437 10
750 5252 12
694 5340 9
N Se8 5329 17
) 450 5402 13
My 350 5400 24
8 250 5314 44
i 188 5434 78
-
; BUS -~ The ajrcraft data bus
; MTBE Launches Attempted Total Aborts
R 20000 5443 8
. G’ 3000 5389 ]
- 1500 5309 3
- 1800 5386 3
» 80 5417 é
. 898 5247 é
7680 9277 é
g 400 5273 7
X 508 5234 16
N CORT - Control and Displays Remote Terminal
y MTBF Launches Attempted Total Abarts
- 4900 5413 1
. 3000 9396 1
- 2000 5374 2
™ 1500 5390 2
- 1000 5299 1
- 7350 5385 3
= 494 5443 )
N See 5372 é
L. 330 5365 11
- 273 5351 13
> 225 5483 13
3 156 5290 23
X . 180 5388 44
e "
:;_ S
<

0

-
.
.
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DEK - Data Entry Keyboard

{

-“-
ot MIBE aunches Attempted Total Aborts
5880 5228 1
e 3008 5252 2
N 2008 5443 7
N 1800 5397 é
N 750 5238 é
- 500 5295 10
256 5418 24
o 100 5335 73
N DSMU - Display Switch Memory Unit
MTBF aunches Attempted Total Aborts
= 5000 5359 2
- 39001 5404 1
I, 2009 5394 3
5 1500 5300 3
2 1120 5443 8
990 5248 é
- 749 5271 12
.- 540 5373 12
- 450 5308 30
< 350 5369 34
= o 100 5375 74
-
” HUD - Heads Up Displ
>;
- MTBE ches Attempted Total Aborts
2000 5313 2
. 1018 5334 19
o 1000 5324 18
-, 750 5261 13
o 588 5295 21
- 300 5443 44 |
|
|
‘; IMFK - Integrated Multi-Function Keyboard 1
x MTBE Launches Attempted Total Aberts
~ 3000 5333 1
= 2000 5472 1
- 730 5260 2
< 560 5329 4
. 3% - 5301 é
.. 100 5204 18
N 75 5315 30
1
B A a™ .
O
._:_ ="
-
?

63




v .
..." ’ “
e ] [ s

-,
a4

—v e
)

v -
» ':'
Pl

AN

?

.......

Mt YAt At SR S A YR P IR Y

INS - Inertial Naviqation System

MTBF Launches Attempted
2008 3349
1500 9444
1606 5358
750 9919
500 3344
250 5427
108 3434
74 5443

MFK - Myl ti-Function Keyboard

MTBF Laynches Attempted
3800 9333
2000 5472
758 5248
S48 9329
350 5301
108 5204
75 3315
MMP_- Master Mode Panel
MIBFE Launches Attempted
8099 3301
4900 5284
3000 5338
2006 9277
1500 9372
1000 5328
750 5344
See 9288
250 5381
MP - Myl ti-Pyr Displ enerator
MIBE Launches Attempted
5808 5369
3000 5381
2000 3341
1500 5429
1120 3443
930 5248
759 35298
560 5274
4350 3341
350 5299
100 9311
64
AR T Pt S e s 0

Total Aborts

13

21
47
115
118

Total Aborts
1

1
8
7
15
41
54

Total Aborts

ONUAN -~

14

22
36

Total Aborts

D WoNOSNMVNOIOD®
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MPDS - Mul ti-Purpose Displays

IR
0 D¢ - 3

3
PR |

T,
§ 'an
"lafv
(A)UII
[- -2~
o ®©1@
® @®n

Py

Launches Attempted
3354

5279
9412
5443
3384
9383
3416
9244
9333
3329
5226

MTU - Multiplex Terminal Unit

MIBF Launches Attempted
17681 5443
16000 5389
80488 5273
4090 5383
iN 2000 5244
- 1500 5237
:2 1000 3363
‘:) Processorg - Aircraft data processors
- MIBE Laun Attempted
o 5000 5240
- 4300 5343
. 4099 5272
- 3009 3443
> 2000 5343
{ 1580 5379
- 1258 3433
- 1900 5309
9080 5396
. 750 5283
A 500 5387
- 3se 5307
S 100 9322
3
ni t
Launches Attempted
5443
5294
5341
3298
5389

é7

......

Total Aborts

‘0:@0'\)0—60-—-0@

Total Aborts
7
e
3
7
10
22
2?7

Total Abort
1

é
é
10
10
14
16
18
16
18
335
497
141

Total Aborts
8

18
18
11
25

..................
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o SLU - Stores Logic Unit
SR MTBE Launches Attempted Total Aborts
{ 3000 5424 9

- 2000 5535 7
SN 1000 5324 12
o~ 853 5443 16
=Y 494 5395 26
e 347 5271 39
i
_‘ SMRT - Stores Management Remote Terminal
SN0
e MIBE Launches Attempted Total Aborts
L2 5000 5514 1
3800 5401 1

> 2000 5541 3

= 1500 5514 8
S 1800 5383 8
X8 694 5554 9

N 500 5498 12

7 347 5443 22
. 250 5494 34
o 100 5441 79
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APPENDIX D

Computer Proqrams for Section 1V

The first program, ESTM3, calculates estimates for the parameters
mu, sigma, and m to be output for later use by program NEWTON. This pro-
gram uses a conjugate gradient search algorithm to determine the zeros
of the derivative vectors of the log likelihood equations given in Sec-
tion IV. The actual algorithm is the IMSL subroutine ZXCGR.

The input should be on TAPE 9 in the following form: dose, number
of subjects, and number of positive responses. The very first line im-
age on TAPE 9 should only contain the number of dose levels. The user is
then asked to input initial estimates for mu, sigma, and m by the inter~
active system. The output is written on TAPE 7 for direct use by the
program NEWTON, or preliminary inspection.

The second code listing is for the program NEWTON. This program
uses a Newton-Raphson method for finding the zeros of the derivative
vectors of the log likelihood functions. The program expects the input

data to be on TAPE 7. The input data should be in the following order:

1.) First card - N, the number of dose levels

2.) Second through N+1st card - dose, number of subjects, number of
responses

3.) N+2nd card - initial estimates of mu, sigma, and m.

The final estimates of mu, signa, and m along with the value of the

log likelihood function at maximum is written to TAPE 8. Also on TAPE 8

is the information matrix evaluated at the final estimates.

-
l.! -
-

LR T VA

WS



i= PROGRAM ESTMS ##+ THE CONJUGATE GRADIENT SEARCH METHOD ##+
2= EXTERNAL FUNLH

3= REAL X@3),GQ3),FLH,W(1&

4= COMMON/DATA/A(20,3),INUM,Z2(20),DIFF(29)

o= READ(9,(13))INUM

4= DO 222 IN={,INUM

1= READ(9,0)A(IN,1),A(IN,2),A(IN,3)

8= Z{IN=ALDG(A(IN,1))

9= DIFF(IN)=A(IN,2)-A(IN,3)

10=222 CONTINUE

1i= ACC=,0000001

12= DO 111 1=1,3

132 PRINT*,"?

14= READ#,X(D

15=11f CONTINUE

16= CALL ZXCGR(FUNLH,3,ACC,500,1,X,G)FLH,NW,IER)

17= CALL FUNLH(IDUM,X,FDUM,GDUM,-999.

18= PRINT#+,FLH,X(4),X(2),X(3)

i9= PRINT#%,G(1),G(2),G(3)

20= END

21=  SUBROUTINE FUNLH(N.X,F,S,FLAG)

22= REAL X(3),5(3),M2,F,P(20),DMU(20),DSIGMA (20),DM1(20)
23= COMMON/DATA/A(20,3),INUM,2(20),DIFF(20)

24= M2={.0

25= IF(FLAG.NE.-999.)THEN

26=5 G1=GAMMA(X(3)

27= G2=GAMMA (M2)

28= G3=GAMMA (X (3)+M2)

29=  BETA=G1#G2/G3
igzg%mﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂRHRHHH“G

Jiz42se+ THIS DO LOOP CALCULATES THE CDF (P(J)) FOR EACH DATA POINT
apnuo AND THE DERIVATIVE WRT EACH OF THE PARAMETERS, MU,SIGMA, M {,
§3: 44+ THE CDF FUNCTIOR L

HEEE R

35= DO 16 J=41,INUM

36= Y=(ZW-X{1)/X(2)

37= TEMP=EXP(Y)/(1 +EXP(Y))
38= IF(X(3).LT. 8.0) THEN

39= P(J)=.9999999999
40= ELSE

4= P(J)=TEMP#*X(3)
42= END IF

43= DM1iJ=P(J)*ALOG(TEMP)

4= PDF=(EXP(Y #X (3))#(1 +EX P(Y))##(-X (3)-M2))/BETA
5= DMU(J)=PDF/(-X(2))

46= DSIGMA(J)=Y#+PDF/(-X(2))

47=19 CONTINUE

48= DO 20 1I={,3

49= S(h=0.8

50=2¢ CONTINUE
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Hiﬁ.‘?* THIS LOOP CALCULATES THE DERIVATIVE VECTOR S(I) OF THE LOG-
ﬂ S R

; S4= DO 40 K={,INUM
:::- Iv= TEMP1=(DIFF(K)-A(K,2)*PE)/ (PO *(1-P(K)))

Sé= S(1)=8(1)+TEMP12DMUGD
37= S(2)=8(2)+TEMP1 *DSIGMA(K)
38= S(3)=5(3)+TEMP1 #DM1(K)

59=40 CONTINUE
60= FUNLL=0.0
6= DO 40 1=1,INUM

%L*PUNLL«*DIFF(D*ALDG(P(DI (1-PAN+A(I,2)#ALOG( -P()
63=60 CONTINUE

64=  F=-FUNLL

5=  S(1)=-5(1)

6=  5Q)=-8Q2)

§7=  S(3)=-5(3)

68=  RETURN

69=  ELSE

76=  WRITE(7,(I3)7INUM

7= DO 106 KKX=1,INUM

12z WRITE?,8)2(KK)A (KX,2),A(KX,3)

73=100 CONTINUE

142 WRITE(?,#8)X (£),X(2),X(3)

75= ENDIF

76=  RETURN '
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i= PROGRAM NEWTON

2= REAL A29,3),P(20),DMU(26),DS1GMA (20),DM1(20),5(3),XINFO@, 3),
3= +XINV(@3,3),WK(4),X(3),M2,55(3)

4= READ(7y(I3))NDATA

5= DO 100 IN={,NDATA

6= READ(7,%A(IN,1),A(IN,2),A(IR,3)
7=100 CONTINUE

8=  READ(7,:)X(1),X(2),X(3)

9=  EPSLON=.000001

10=  M2si.0

11=5  GiaGAMMA(X(3)

12=  G2=GAMMA(M2)

13= G3=GAMMA(X(3)+M2)

14=  BETA=Gi#G2/G3

15= DO 10 J=1,NDATA

16= Y=AWJ,1)-X1))/X(2)

17= TEMP=EXP(Y)/({+EXP(T))
18= IFX(3) .LT. 0.8) THEN
19= P(J)=.9999999999

20= ELSE

21= P(WJ)=TEMP#*X(3)

22= END IF

23= DM1i)=P(N+ALOG(TEMP)

24= PDF=(EXP(Y #X (3))#({ +EXP(Y))##(~-X(3)-M2))/BETA
25= DMU(N=PDF/(-X(2)

26= DSIGMAW)=Y#PDF/(-X(2)

27=1¢ CONTINUE

282 DD 20 1=1,3

29= S(D=0.0

30= DO 30 J=4,3

3= XINFO(IJ)=9.9

32239 CONTINUE

33=2¢ CONTINUE

34= DO 40 X=4,NDATA

3H= TEMP1=((A(K,2)-A (K,3)-A(K,2)*P{0)/ (PEO#{{ -P(K))

36= S(1)=S(1)+TEMP1+DMU@

37= 5(2)=5(2)+TEMP1#DSIGMA (K)

38= 5(3)=S(3)+TEMP1+DM1(K)

39= TEMP2=A(K,2)/(PEO#1-PIO)

49 XINFO(1,1)=XINFO( 1)+ TEMP2HDMU(K) #22)

44= XINFO(1,2)=XINFO(1,2)+ TEMP2+((DMU(K)*DSIGMA (K))
42= XINFO(1,3)=XINFO({,3)+TEMP2#((DMU(K)*DM{ (KM
43= XINFOQ,2)=XINFO(2,2)+TEMP2#(DSIGMA (K)##2)

44= XINFO@,3)=X INFOQ,3)+TEMP2#((DSIGMA GO*DM1 D)
45= XINFO(@3,3)=XINFO@,3)+TEMP2#(DM1(K)##2)

46=4¢ CONTINUE

47= XINFO@,1)=XINFO(1,2)

48= XINFO(3,1)=XINFO(,3)

49= XINFO@3,2)=XINFO(2,3)

S50= TEST=SQRT(S(1)##24+5(2)##2+5(3)#%2)

Si=  IR(TEST.GT.EPSLON) THEN

S52= CALL LGINF(XINFO,3,3,3,0.9,XINV,3,S5,WK,IER)
53= T1=20.0
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S4=
55=
Sé=
S7=
S8=
59=
40=50
é1=
62=
43=
é4=
635=
é6=
7=
48=
49=
79260
=
72=
73=
4=
5=
76=
7=
78=80
79
80=

T2=0.0
T3=0.0
DO 5@ I=1,3
T1=T1+XINV(,D#S(I)
T2=T2+XINV2,D#S(D)
T3=T3+XINV(3,D+5(I)
CONTINUE
X(1)=X{1)+TH
XQ2)=XQ)+T2
X{3)=X(3)+T3
GOTO S
ELSE
FUNLL=9.0
DO 66 1=1,NDATA
11=A(1,2)-A(1,3)
FUNLL=FUNLL+ZZ*ALOG(P(I)/(1-P(IN+A(1,2)*ALOG({ -P(D) )
CONTINUE
WRITE(S,#)'THE LOG-LIKE FUN AT MAX= ‘,FUNLL
WRITE(8,#)’EST QF MU= ',.X(1)
WRITE(8,#)’EST OF SIGMA= *,X(2)
WRITE(8,#)'EST OF Mi= *,X(3)
WRITE(,'(" THE FOLLOWING IS THE INFORMATION MATRIX")"
DO 80 I=4,3
WRITE(8,®)XINV(I,1),XINV(I,2),X INV(I,3)
CONTINUE
END IF
END
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. APPENDIX E

Computer Programs for Section ¥

e l‘,f‘.“&‘ VL

AASHAAN

This program is for performing the calculations of the Quantit model
of Section V. This code is almost exactly as given to me by Mr. Copen-
haver (Ref 11>, only a few changes have been made. The changes made
were those needed in order to implement it on the Cyber 758 computer at
WPAFB, and one small change (lines 776-781) to handle data larger than
anticipated by Mr. Copenhaver. Copies of the user’s manual, also ob-

tained from Mr. Copenhaver, are obtainable from Dr. Barr in the Depart-

-+ NN

‘l.

ment of Mathematics, AFIT.
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PROGRAM QUNTIT
#* QUANTIT ANALYSIS

LW -
n u un
O0

C»#+THIS IS THE SECOND FORTRAN VERSION OF QUANTIT ANALYSIS, WRITTEN FOR
5=C THE IBM 370/159. THIS PROGRAM WAS CONVERTED FROM THE PL/I VERSION.
6=C

7=C###RESULTS FOR THE NORMAL MODEL (PROBIT ANALYSIS) ARE ALSO PRODUCED BY
8=C THIS ROUTINE. BOTH THE OMEGA MODEL (QUANTIT ANALYSIS) AND THE NORMAL
9=C MODEL HAVE BEEN SCALED SO THAT THE PROBABILITY DENSITY FUNCTION FX)
10=C ATTAINS A MAXIMUM VALUE OF { AT THE ORIGIN (F(@) = 1),

11=C LE.,

12=C THE OMEGA PDF 1S: F(X) = { - W#*(V+{) WHERE W IS THE ABSOLUTE VALUE
13=C OF #P-1).

14=C THE NORMAL PDF IS: F(X) = EXP(-Y #Y#P]) WHIRE P1=3.14159265

15=C

16=C#*THE FOLLOWING STATEMENT DOUBLE PRECISIONS EVERY VARIABLE BEGIN NING
17=C WITH THE LETTERS A THRUH AND O THRU Z.

fs=  IMPLICIT DOUBLE PRECISION(A-H,0-D

19=  DIMENSION WHAT(7),XXX(59)

20=  COMMON /BLANK{/ XX(50),XN(50),X5(50),XP(58),XPHAT(S0),XSAVE P(59)

2i= COMMON /BLANK2/ AHAT,BHAT,AINIT,BINIT,V

22= COMMON /BLANK3/ SAVEA(101),SAVEB(181)

23= COMMON /BLANK4/ ISETS,ITERA,ISWANA,IVOP,ISTEP,KD,MN,IXSW

24= COMMON /BLANKS/ SAVEV(50),V123(3),SAVELN(S9),XL123(3)

25= COMMON /COM{/ XK,XD,X1

26= COMMON /COM2/ P1,S5Q2P1,A1,A2,A4,XLIKE

27= COMMON /ALFHAT/ VFIN,TITLE(?)

28=  COMMON /PANDV/ XPVAL(S9),XVVALM

29=  CHARACTER XCNTRL#5,XTITLE#5,XEDVAL#5,XDOSES*S,X VPARM#*5,XFIN 15%5,
30= 1XBLANK#8,FINAL{#8,VFIN*S,TITLE*#8,XLABEL#5

31=  DATA XCNTRL,XTITLE,XEDVAL,XDOSES,X VPARM,XFINIS /'CNTRL','TI TLE',
32= {’EDVAL'/DOSES’,/VPARM','FINIS'/

33= DATA FINAL1/ ‘ (FINAL)/

34=  DATA XBLANK /’ ‘l

35=  PI = 3.14159265359

3é=  SQ2PI = DSART(2.#PI)

37= ISETS =9

38=C## READ CNTRL CARD

39= 1 READ®,2,END=509) XLABEL,XD,LOGT,XLOGA ,MN,IVOF,INOV,IPRTV

4= 2 FORMAT(AS,12,11,F3.0,11,11,11,I1)

41=  ISETS = ISETS + {

42= NODOS=9

43= IERR=0

44=  WRITE(7,3) ISETS

45= 3 FORMAT({H{,’'DATA SET *,I3)

46=  IF (XLABEL.EQ.XCNTRL) GO TO 4

47=  WRITE@,S)

48= 5 FORMAT({Ho,'s # #+ ERROR, CNTRL CARD IS NOT PRESENT ORISNO T THE F
49=  {IRST CARD IN THIS DATA SET. PROGRAM IS TERMINATED")

Se= GO TO See

Si= 4 CONTINUE

S22 IF(LOGT.NE.3) GD TOD é

53=C#»CHECK FOR VALID LOG TRANSFORMATION

75




S4=  IF(XLOGA.GT.1.8) GO TO 6

S5=  WRITE(7,?) XLOGA

Sé= 7 FORMAT({H0,'* * ¥ ERROR ~- A= /FS.3,’ IS INVALID BASE FOR LOG TRA

57=  INSFORMATIONY

Se= & CONTINUE

S59=  IXSW =1

60= ISWANA =@

é1= IEDCRD = @

62= IVCARD = @

3=  VFIN = XBLANK

64=C+#READ TITLE CARD

5=  READI5,3,END=500) XLABEL/(TITLE(D,I=1,9)

6= 8 FORMAT(AS,948)

6= IF(XLABEL.EQXTITLE) GO TO 9

8=  WRITE(7,18) XLABEL(TITLE(,I=1,9

49= 1 FORMAT(1He,s *  ERROR: TITLE CARD NOT ENCOUNTERED. THE FO LLOWING

70=  1CARD WAS READ IN+,/1X,A5,9A8)

71= GO TO 590

72= 9 WRITE(,41) (TITLE(D,I=1,9)

73= 11 FORMAT(1H®,948)

74=C+*READ NEXT CARD

75= 50 READI(S,12) XLABEL.WHATID),I=1,7)

6= 12 FORMAT(AS/SX,7F10.0)

77=C+*CHECK IF EDVAL CARD

78=  IF(XLABEL.NE.XEDVAL) GO TO 13

79=  1EDCRD =

86=  IF( (MN.GE.1).AND.MN.LE.7) GO TO 14

81=  WRITE(Z,15) MR

82= 15 FORMAT({H@,'s * *ERROR: DATA FROM EDVAL CARD CANNOT BE RETR IEVED.

83= 1 CNTRL CARD INDICATES THAT THERE ARE ‘,14,"'VALUES)

4=  IF(IERR.EQ.®) IERR = 1 |

85= GO TO 1009 i
|
|
|

86= 14 DO 16 I=1,MN
87= 16 XPVAL(D = WHAT(D
88= DO 17 I= {,MN
89=  IF(XPVAL(D.GT.8..AND.QXPVAL(D.LT.1) GO TO 17
98=  WRITE(7,48) XPVAL(D
91= 18 FORMAT({H0,'s # +ERROR: THE ED VALUE OF P= ,D12.5,’ IS OUT OF RAN
92s  {GE. MUST BE BETWEEN 8 AND 1)
93x GO TO 1090
% 94= 17 CONTINUE
- 95=C++CHECK IF VPARM CARD
o 96= 13 IFCXLABEL.NE.XVPARM) GO TO 19
R 97=  IVCARD = {
: 98=  IF((INOV.GE.1).AND.(INOV.LE.?) ) GO TO 20
99=  WRITE(,21) INOV
100= 21 FORMAT({He,’* * ¥ERROR: DATA FROM VPARM CARD CANNOT BE RETR IEVED.
101=  {COLUMN 13 OF CNTRL CARD INDICATES THERE ARE *,I5,' VALUES
102  IFERR.EQ.0) IERR = {
103= GO TO 1000
104= 29 DO 22 1=1,INOV
105=  XVVAL(D = WHAT(D
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10é=  IF(XVVAL(D.GT.(-1.0N.AND.(XVVAL(]).LE.20.)GO TO 23

167=  WRITE(7,24) XVVAL(D

108= 24 FORMAT({Ho,’# * * ERROR: INVALID VALUE OF V= /1125, WAS READ FR
169=  {OM VPARM CARD. MUST BE GREATER THAN -{ AND LESS OR EQUAL TO 20.")
118= GO TO 1000

111=C##0QNLY FIRST 3 DECIMAL PLACES OF V ARE USED.

112=C##+THE FOLLOWING 3 STATEMENTS ARE IDENTICAL TO FLOOR(X) IN PL/I.
113=C THAT IS, THE LARGEST INTEGER .LE. TO X. THE FORTRAN FUNCTIO N
114=C IDINT(X) IS IDENTICAL TO FLOOR(X) FOR X.GT.0 , BUT NOT FOR

115=C NEGATIVE VALUES OF X.

116= 23 CONTINUE

117= VDEL = XVVALI(D

118=  DELSGN = DSIGN(8.5D@,VDEL)

119= V= DBLE( IDINT(VDEL#10049. + DELSGN) )/1089.

120= IF AVVAL(D.LT.~.999) XVVAL{D = -.999

124= 22 CONTINUE

122=C#+CHECK IF DATA (1.E. ‘DOSES') CARD HAS BEEN READ.

123= 19 IF (XLABEL.NEXDOSES) GO TO 25

124=  NODOS = NODOS + 1

125=  IF (NDDOS.LE.KD) GO TO 26

126=  WRITEQ,27) KD

127= 27 FORMAT({H9,'* # *ERROR: THE NO. OF DATA CARDS EXCEEDS THE V ALUE OF
128= { ,13,' SPECIFIED IN COLUMNS é-7 OF CNTRL CARD"

129= GO TO 1000

130= 26 XX{NODQS) = WHAT({)

131=  XS(NODOS) = WHATQ)

132=  XN(NODQS) = WHAT(3)

133= IF((XS(INODOS).LT.0.0).0R.XS(NODOS).GT ININODOSN.ORJLXN(N ODQS).L
134= {E.0.9) GO TO 29

135= GO TO 39

136= 29 WRITE(?,31) XX(NODOS),XS(INODOS),XNINODOGS)

137= 31 FORMAT(i{H9,’s+ #ERROR: ONE OR MORE INVALID DATA ITEMS: DOS E= /,D1
138= 125’ 8= /,D12.5,' N= ',D12.5)

139=  IF (IERR.EGQ.9) IERR={

140= GO TO 1000

141= 30 CONTINUE

142= 25 IFXLABEL.NEXFINIS) GO TO 50

143=  IF((MN.NE.0).AND.(IEDCRD.EQ.0)GO TO 32

144= GO TO 33

145= 32 WRITE(7,34) MN

146= 34 FORMAT({Ho, * # *ERROR: MN= /,I5,' INCOL. 12 OF CNTRL CARD , BUT N
147= 10 EDVAL CARD IS PRESENT. DEFAULT EDVALUES WILL BE USED")
148= GO TO 35

149= 33 IF(MN.NE.0) GO TO 36

§359=C##ASSIGN DEFAULT EDVALUES IF EDVAL CARD NQOT PRESENT

154= 35 MN=7

152=  XPVAL({) =.01

153=  XPVAL(2) =.85

154=  XPVAL(3) =.10

155=  XPVAL(4) =50

156=  XPVAL®) =.90

157=  XPVALI(6) =.95
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158=  XPVAL(? =.99
159=C#+CHECK ON OPTION FOR V (COL. 13 ON CNTRL CARD)
160=C#++CHECK FIRST FOR SEARCH PROCEDURE
- 161= 36 IF(IVOP.EG.2) GO TO 37
162=  IF(IVOP.EQ.®) GO TO 41
163=C++CHECK IF VALUES OF V ARE READ IN (OPTION 2)
164=  IF((IVOP.EQ.1).AND.{IVCARD.EQ.®) ) GO TO 38
165= GO TO 39
166= 38 WRITE(7,49) IVOP
167= 40 FORMAT(1Ho,'s # *ERROR: IVOP = *,I5,’ IN COL. 13 OF CNTRL C ARD, BU
168= 1T NO VPARM CARD IS PRESENT. DEFAULT VALUES ARE ASSIGNED")
169= GO TO &
- 176= 39 IFIVOP.NE.®) GO TO 37
- 171=C#+ASSIGN DEFAULT VALUES OF V.
y 172= 41 XVVAL(1)= -9
173=  XVVALQ)= -5
174=  XVVAL(3)= 0.
175=  XVVAL(@)= 1.
> 176=  XVVAL®S)= 5.
- 177=  XVVAL®)= 1.
- 178=  XVVAL(M= 20.
179=  INOV=7
18e= 37 IF (NODOS.EQ.KD) GO TO 1009
181=  WRITE(7,43) XD,NODOS
182= 43 FORMAT({Ho,'* * sERROR: *,IS,’'DOSES ARE INDICATED ON CNTRL CARD(CO
183=  1L.é-7). ONLY ,IS,’ DOSE CARDS WERE PRESENT"
184=  IF(IERR.EQ.0) IERR = {
(Y] 185= GO TO 1000
186=C##CHECK IF ERROR. IF 50,60 TO NEW DATA SET.

N 187= 1000 IF(IERR.EQ.1) GO TO {

~ 188=  IF (LOGT.EQ.4) WRITE(7,44)

N 189= 44 FORMAT({H®,'DOSAGE TRANSFORMATION: NONE"

i9e=  IF(LOGT.LT.2).0R.(LOGT.GT.4)) LOGT={

191=  IF (LOGT.EQ.1) WRITE(7,45)

192= 45 FORMAT(1H®,'DOSAGE TRANSFORMATION: LOG(BASE 10)")

193=  IF (LOGT.EQ.2) WRITE(7,46)

194= 46 FORMAT(1H0,'DOSAGE TRANSFORMATION: NATURAL LN,BASE E?
195=  1F(LOGT.EQ.3) WRITE(7,47) XLOGA

196= 47 FORMAT(1H0,’'DOSAGE TRANSFORMATION: LOG(BASE *,F5.8,’ })
197=  WRITEQ?,48)

198= 48 FORMAT(1H0,17X, TRANSFORMED NO. OF NUMBER"
199=  WRITE(7,49)

200= 49 FORMAT({H ,7X,’'DOSAGE’,7X,’'DOSE’,8X,’'SUBJECTS’,4X,'/RESPONDI NG’/4X,
20i= {'PROPORTION"

202=  ]=0

203= 162 I=I+1

204=  XSAVEP(]) = XS(I)/XN(I)

205=  XXX(D = XX(I)

206=  XP(I) = XSAVEP(D

207=  IF( (XS(1).EQ.0).0R.{XS(D.EQ.XN(I) ) XP(D) = (XS(D+ 0.5) /

208= {(XN(D +1.0)

209= IFLOGT.EQ.4) GO TO 8@t

219= 8000 IF ( LOGT.EQ.1) XX(I) = DLOG1o(XX{I)



211=  IFQLOGT.EQ.2) XX(I) = DLOGIXX{I)

212=  IF(LOGT.NE3) XLOGA = {0.

213=  IFQLOGT.NE.3) GO TO 36001

214= XTRANS = DLOG10(XL0OGA)

215=  XX({I) = DLOG10(XX(I)/XTRANS

214= 8001 CONTINUE

2{7=  WRITEQ,43) XXXMD,XX(D,XNMD,XSMD,XSAVEP(D)

2i8= 63 FORMAT(1H®,3X,2(D12.5,2X),F6.8,7X,F6.8,9X,F?.4)
2i9s  IFA.LT.KD) GO TO 162

220=  WRITE@,51) KD

221= 51 FORMAT({H®//,’ NO. OF DOSAGE LEVELS = *,14)

222=  WRITEQG,52)

223= 52 FORMAT(1H6,'THE OPTIONFOR V= )

224=  IF(IVOP.NE.2) GO TO 53

225=  WRITEG 59

226= 54 FORMAT({H+,20X,'SEARCH PROCEDURE"

227=  IF(IPRTV.EQ.{) GO TO 55

228=  WRITE®,56)

229= 56 FORMAT(1H+,37X,(PRINT COMPLETE RESULTS FOR V=9,1, AND FINA L V17
23¢= GO TO &9

231= 35 WRITE(?,57)

232= 57 FORMAT(1{H+,37X,'(PRINT COMPLETE RESULTS FOR ALL VALUES)")
233= GO TO 60

234= 53 CONTINUE

235= IF(IVOP.EQ.1) GO TO 58

236=  WRITEG,59) XVVAL(),I=1,INOV)

237= 59 FORMAT({H+,20X,’ DEFAULT VALUES: V="', 7(F18.3) )
238= GDTDO

239= 58 WRITE(7,61) (XVVAL(D,I={,INOW

240= 61 FORMAT(1H+,20X,’ INPUTTED VALUES: V="', 7(F{9.3))
241= 60 CALL MLEAB

242=  CALL PRINT

243= ISWANA =1

244=  IFUVOP.EQ.2) GO TO 65

245=C++PRODUCE RESULTS FOR FIXED VALUES OF V (IVOP = { OR 2)
246= DO éé 1=1,INQV

247= V= XVVAL(D

248= CALL VRAT

249=  CALL MLEAB

250= CALL PRINT

251= 66 CONTINUE

252=  WRITE(7,3000) ISETS

253= 3000 FORMAT({HO,'*» #* * END OF DATA SET,I3)/ ###)
254=C»2G0 TO NEW SET OF DATA

255= GOTO1

256=C#+#SEARCH PROCEDURE: FIND V IN (~{ ( V <= 20 ) THAT MAXIMIZES THE LIKELI
257= 65 ISTEP =0

258= IVDONE=3

259= DO 67 1=43

260= ISTEP =ISTEP + {

261= TEMPV = DBLE(D - {.

262= V= TEMPV
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263=  V123(D) = TEMPV
, 264=  SAVEWV(D = TEMPV
Y 265=  CALL VRAT
266=  CALL MLEAB
267=  XL123(D) = XLIKE
268=  SAVELN(D= XLIKE
269=  IF ((LLT.3).0R.IPRTV.EQ.1) ) CALL PRINT
270=  IF ((L.EQ.3).AND.(IFRTV.EQ.01GO TO 68 274= GO TO 67
272= 68 WRITE(,70)
273= 70 FORMAT(1H1,58X,'SEARCH PROCEDURE'\//1X 42X /STEP}12X,'V"sf 2X,'LN
224= (L)
275=  WRITE(,77) ISTEP,V,XLIKE
276= 67 CONTINUE
277=  IF((XL123@).6T.XL123(1).AND.(XL123(2).GT.XL123(3) ) GO TO 72
278=  GODTO73
279= 72 DEL = -0.4
286= DO 741=1.2
281=  DEL =DEL/2.
282= DO 75 J=1,2
283=  ISTEP = ISTEP +1
284=  IVDONE = IVDONE + {
285=  VDEL = V123(2) + DEL
286=  DELSGN = DSIGN(0.5D,VDEL)
287= V= DBLE( IDINT(VDEL#1600. + DELSGN) )/1600.
288=  V123QwJ-D=V
289=  SAVEV(IVDONE) = V
290=  CALL VRAT
291=  CALL MLEAB
292=  XL123(28J-1) = XLIKE
293=  SAVELN(UVDOND = XLIXE
294=  IF(IPRTV.EQ.1) GO TO 175
295=  WRITEQ,77 ISTEP,V,XLIKE
296= 77 FORMAT(1HO,11X,14,10X F7.3,4X,D15.7)
297=C++FORMAT 77 IS F1 IN PL/I
298= GO TO 176
299= 175 CALL PRINT
300= 176 CONTINUE
394=  DEL = -DEL
362= 75 CONTINUE
303=C#G0 TO HILOW
304=  IF ((XL123(3).GT.XL123(2)).0R.(XL423(1).GT.XL123(2)) ) GO TO 78
395= 74 CONTINUE
6= V=i,
307=C++GD TO V1
308= GO TO 80
3¢9= 73 CONTINUE
319=C#+THIS IS HILOW
314= 78 IF (XL123(3).LE.XL123(2)) GO TO 81
3122 IF(IVDONE.NE.3 GO TO 82
313=  DEL=2,
314= GO TOSE3
315= 82 DEL = -DEL
314= 83 XL123(1) = XL123(3)
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3= V123(1) = V123(3)

>
e e 318= GO TO 84

AR 319= 81 IF (JVDONE.EQ.3) DEL = -.2
[ 320=C#+DELV

o 324= 84 CONTINUE

- 322=  VDEL = V123(1) + DEL

N 323=  DELSGN = DSIGN(6.5D9,VDEL)

> 324= V= DBLE( IDINT(VDEL+#1009. + DELSGN) )/1000.

325=  Vi232= V
326= ISTEP=ISTEP +1

3 3272 DO 851= 1,IVDONE

> 328=  IF(V.NE.SAVEV(D) GO TO 85
EA: 329=  IFUPRTV.EQ.0) GO TO 86

2. 330=  WRITE(7,87) ISTEP,SAVEV(D
R 331= 87 FORMAT(H®,//,1X,'STEP",13,: V= "F5.2," (PREVIOUSLY CALCU LATEDY
3= 1)

% 333=C#++FORMAT 87 IS F2 IN PL/1

2 334= GDTOSS

2 335= 86 WRITE(7,77) ISTEP,SAVEV(I),SAVELN(D
336= 88 XL123(2) = SAVELN(D)

337=C#*G0 TO CHKL
338= GO TO 89

< 339= 85 CONTINUE
3 340=  IVDONE = IVDONE + 1
3 3412 SAVEV(IVDONE) = V
o 342=  CALL VRAT
N 343=  CALL MLEAB
« IV 384=  IFUPRTV.ED.D) GO TD 94
" 3452 WRITE(7,77) ISTEP,V,XLIKE
346= GO TO 92

N 347= 91 CALL PRINT
. 348= 92 XL123(2) = XLIKE
3492 SAVELN(IVDOND = XLIKE

o 350=C+CHKL

~ 351= 89 IF(XL123(2).6T.XL123(1) GO TO 93
N 352=  DEL = -DEL/2,

353=  YABS = DABS(DEL)

5 354=  IF( (XABS.GE.0.5).AND.(V.GT.5.8) ) GO TO 94
‘ 355=  IF(O(ABS.GE.8.25).AND.(V.GT.2.0).AND.(V.LE.5.9) ) GO TO 94
i 356=  IF( (XABS.GE.8.1).AND.(V.LE.2.8)) GO TO 94
’ 357= GO TO 95
- 358= 94 XL123(1) = XL123(2)
o 359=  V123(1) = V123
2 360=C+4GO TO DELV
361s GO TD 84
, 362= 95 CONTINUE
363= GO TO 96
. 364= 93 CONTINUE
365sC##IF V=-,8 AND DEL=-.2, SET DEL = -.{
- 366=  IF( DABS(V+.8D9).GT.1.6D~04) GO TO 8602
4 367s  IF(DABS(DEL+9.2D9).LE.1.0D-04 ) DEL = -9.1D9
368= 8092 CONTINUE
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369=Cx#xCHECK IF V=-.9 OR V=29.

- 37¢=  IF({ DABS(V+@.9D9).LE.1.0D-88) GO TO 109
AN 371=  IF(V.GE.20.D9) GO TO 100
4 e 372=  XL123(1)=XL123(2)
{ 373= Vi23() =V
» 374=C#+G0 TO DELV
- 375= GO TOD 84
! 374= 96 V= V123(1)
-.1 377:C#2V1
" 378= 80 CALL VRAT
! 379= CALL MLEAB
- 380= 100 VFIN = FINAL1
- 381=C#+FINALYV
¢ 382=  CALL PRINT
- 383=  WRITE(7,3000) ISETS
384=  WRITE(7,101)
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387=

390=
391=

392=

393=

394=

395=

ﬁ 396=
' 397=

398=

399=

400=

- 404
402=
403
- 404=
405=
L 406=
; 497=

498=
409
Mo=
411«
412=
413=
A4=
A1S=
Mé=
Af7=
418=
419=
420=
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385= 161 FORMAT(1H{)
386=C»#G0O TO NEW DATA SET

GOTO!

388= 500 WRITEQ?,501)
389= 504 FORMAT(i{H9,//,20X,/#* * * END OF PROGRAM###)

STOP

END

SUBROUTINE PRINT

IMPLICIT DOUBLE PRECISION{A~H,0-2)

DIMENSION FDIF(50),EDP(58),VAREDP(59),SEEDP{5@)

COMMON /PANDV/ XPVALS8),XVVAL(?)

COMMON /BLANK1/ XX(50),XN(50),X5(50),XP(50), XPHAT(50),XSAVE P58
COMMON /BLANK2/ AHAT,BHAT,AINIT,BINIT,V

COMMON /BLANK3/ SAVEA(101),SAVEB(i01)

COMMON /BLANK4/ ISETS,ITERA,ISWANA,IVOP,ISTEP,KXD,MN,IXSW
COMMON /BLANKS/ SAVEV(59),V123(3),SAVELN(58),XL123(3)
COMMON /ALPHAT/ VFIN,TITLE()

COMMON /COM2/ PI1,502P1,A1,A2,A4,XLIKE

CHARACTER XBLANK#8,VFIN#5,TITLE*38

DATA XBLANK /’ )

ITENS= -8

CHISG = 9.

IF(ISWANA.EQ.0) GO TO {

WRITE7,2)

2 FORMAT({H1,50X,* #+ ¥ QUANTIT ANALYSIS # # %)
IF( IVOP.EQ.2).AND.(VFIN.EQ.XBLANID)GO TO 3
WRITE(,4)

4 FORMAT({H®
GDTODS

3 WRITE(7,8) ISTEP

6 FORMAT({He,’'SEARCH PROCEDURE: STEP/,I3)

5 WRITE(,7) V,VFIN

7 FORMAT(H ,61X,V = ,F1.3,A8)

GOTO 3

{1 WRITEG,?)

9 FORMAT(1H1,/51X,'#* * #+ PROBIT ANALYSIS * % #)

8 CONTINUE

.
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422=  WRITE(?,10) ISETS{(TITLE(D,I=1,9)

423= 19 FORMAT(1H0,’'DATA SET ',13,": ',94A8)

424=  WRITE(,11) AINIT,BINIT

425= 11 FORMAT(1He,/,1 X, INITIAL ALPHA = ,D15.7,7X,/INITIAL BETA = ‘,D{5.
426= {7

427=  WRITE(,42)

428= 12 FORMAT(1H®,'ITERATION’,12X,’/ALPHA",14X,’'BETA"
429= DO {3 1=4,ITERA

430= WRITEQ,{4) 1,SAVEA(]),SAVEB(])

43i{= 14 FORMAT({H ,2X,I3,11X,D15.7,3X,D15.7)

432= {3 CONTINUE

433= AA2=-A2

434=  WRITEQ,15) A4,AA2,AA2,A1

435= {5 FORMAT({H9,/1X,'THE VARIANCE-COVARIANCE MATRIX FOR ALFHA AN D BETA:
436= 1)/,2(72(6X,D15.7) )

437=C+sN_LINE

438= 16 ITENS = ITENS +9

439=  NUM = MINO(KD,ITENS+8)

449=  WRITE(,47) XPHAT(),I=ITENS,NUM)

441= 17 FORMAT({Ho,//1X,MLE FOR P: ‘,9(3X,F19.7))
442=  WRITE®@,184XSAVEP(I),I=ITENS,NUM)

443= 18 FORMAT(WH ,'OBSERVED P: ‘,9(3X,F10.7) )

434= DO 19 I=1,XD

445= {9 PDIF(I) = XPHAT(I) - XSAVER(

446=  WRITE®(,20) { PDIF(D),I=1TENS,NUM)

447= 20 FORMAT({H ,'DIFFERENCE : /,9(3X,F10.7) )

443=  IF(NUM.LT.KD) GO TO 16

449=  BHATSQ = BHAT*BHAT

450= XFIRST = A4/ BHATSG

45i{= XLAST = -A2#2.0 / BHATSQ

452= XSEC = Al /BHATSG

453=  IF (ISWHANA.EQ.0) GO TO 21

454=C++UUANTIT EDVALUES

455= DO 22 1=4,MN

456= CALL QUANT! (XPVAL(D,EDP(D) )

457= 22 EDP(D) = (EDP(I) - AHAT) / BHAT

458= GOTOD23

459=C#+PROBIT RESUTLS

460= 2 CALL INVNOR(XPVAL,EDP,MN)

46i= DO 24 1=4,MN

462= 24 EDP(I) = (EDP{I)/ SQ2PI - AHAT) / BHAT

463= 23 DO 25 I= 1,MN

464=  VAREDP(I) = XFIRST + XSEC#EDP(D+EDP() + EDP()*XLAST
465= 25 SEEDP{I) = DSQRT ( VAREDP(I) )

466=  WRITEQ,28)

467= 26 FORMAT({H9,/6X,'P',9X,'ED ESTIMATE',10X,'VARIANCE",10X,’STD . ERROR
468= 1)

469= DO 27 I=1,MN

479= 27 WRITE(7,28) XPVAL(]),EDP(I),VAREDP(I),SEEDP(I)
471= 28 FORMAT(1H®,F10.7,3X,D15.7,2(4X,D15.7) )

472= DO 29 1=4,KD

473=  PDIF(I) = PDIF(D)+PDIF(D)
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474= XYZ = XPHAT(D* (i, - XPHAT(D)

475= 29 CHISQ = CHISA + XN(I) #* PDIF(D / XYZ

476=  WRITE(?,30) XLIKE,CHISQ

477= 30 FORMAT({He,/,SX,'LNL = *,D15.7, 5X,'CHI SQUARE = ",D{5.7)

478=  RETURN

479= END

480= SUBROUTINE QUANCDXPHATXX,F)

481=C#+THIS ROUTINE CALCULATES THE CDF FOR THE OMEGA DISTRIBUTION. I. E.,
482=C GIVEN X, FIND P.

483=  IMPLICIT DOUBLE PRECISION (A-H,0-2)

484= COMMON /BLANK2/ AHAT,BHAT\AINIT,BINIT,V

485= COMMON /BLANK4/ ISETS,ITERA,ISWANA,IVOP,ISTEP,KD,MN,IXSW
486=  DIMENSION XPHAT(50),XX(50),F(59)

487= DO I=4,KD

488= 7= AHAT + BHAT # XX(D

489= XK=0

499 Q@2=1,

491= DO2J={,i04

492=  PC =XPHAT(D

493=Cx2ANOT

494= 3 IF(PC.LT.05) PC=1.0 -PC

495=  CALL QUANT!(PCHP)

4%96= G =HP - DABS(D

497= Q1 = i.- (DABS(2.# PC - 1.)) #:(V+{.)

498= XPHAT(D) = PC - G#Q1

499=  IF XPHAT(D.LT.1.8) GO TO 4

500=C»*FIND NEW INITIAL ESTIMATE OF P. IF INITIAL IS GREATER THE FINA L
501=C ESTIMATE (FOR P GREATER THAN 5) , THENX CONVERGENCE 1S GUARA NTEED.
S502= KXK=KXK+{

503= IF KK.GT.1)GOTOS

S04=  PC = .9999D@

585=C#+G0 TO ANOT AND TRY AGAIN

Seé= GOTO3

507= S IF (KK.GT2)GOTO 6

508=  PC = .99999999D@

509= GO TO3

$10=C##NOTE THAT CONVERGENCE CRITERIA FOR P 1S 0.00001 . HENCE IF T HE
511=C PROGRAM REACHES THIS POINT, SET P = .99999999

Si2= 4 XPHAT(I) = ,99999999D0

513=C#xG0 TO FIN

Si4= GO TO 10

Si5= 4Q2=DABS(XPHAT( - PC)

Sié=  IF(Q2.1T.0.00001) GO TO i@

S{7= IF J.LE.180) GO TO 2

S5i8=  WRITE, 1) I

549= {4 FORMAT(1H0,'NDTE: MORE THAN 100 ITERATIONS ARE REQUIRED FOR P(‘,
920= {I3,) IN SUBROUTINE QUANCD’)

v2i= GO TO 10

S22= 2 CONTINUE

523=C#+FIN

S24= {0 IF(Z.LT.0.0) XPHAT(]) = {. - XPHAT()

525= { F(I) = ., - (DABS(2.#XPHAT(I) - {.) }##(V+{.))

S26= RETURN
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e $27=  END
s $28=  SUBROUTINE NORMCD (XPHAT,XX,KD,F)
NP $29=C#+THIS ROUTINE CALCULATES THE CDF FOR THE NORMAL DISTRIBUTION. I .E.,
ﬂ $30=C GIVEN X, FIND P.
A $31=  IMPLICIT DOUBLE PRECISION (A-H,0-2
o $32=  COMMON /BLANK2/ AHAT,BHAT.AINIT,BINIT,V
i $33= COMMON /COM2/ P1,502PI,A{,A2,A4,XLIKE

N $34= DIMENSION XPHAT(59),XX(50),F(50)
$35= DIMENSION B()

$36= B0 = 0.23146419

$37=  B(1) = #.31938153

$38=  B(2) 2-0.354543782

$39=  B(3) = 1.781477937

S48=  B(4) =-1,821255978

541z  B(S) = 1.330274429

S42= DO { I={,KD

543= CDF=ao.

S44= 7= (AHAT + BHAT #XX(I)) # sQ2P1

545= T =1.9/ (1.0 + BO*DABS(D )

S4= DO02J=145

547= 2 CDF = CDF + B(#T**DBLE()

548z  CDF =(CDF / SQ2P1) #+ DEXP(~-7#2/2.)

549 XPHAT(D) = {. - CDF

550=  IF(Z.LT.0.0) XPHATI(I) = CDF

551= 71=AHAT + BHAT#XX(D

552= 1 F(I) = DEXP(-Z#Z%P])

§53= RETURN

554= END

555= SUBROUTINE INVNOR ®,Y,N)

556=C##THIS SUBROUTINE CALCULATES THE NORMAL DEVIATE (I.E.,,MODIFIED P ROBIT)

557=C OFP. GIVENP, FIND Y.

$58=  IMPLICIT DOUELE PRECISION (A-H,0-2

§59=  DIMENSION P(59),Y(58),CC(2),DD(3)

Sé0=  CC(1) = 0.802853

Sé1=  CC(2) = 0.0108328

562=  DD(1) = 1.432788

563=  DDQ) = 0.189249

Sé4=  DD(3) = 0.001308

565= DOI=14,N

S66= XNUM = 2515517

567= XDEN=1.0

568z PP =P(D

569=  IF(P(D.GT.L.5) PP=1.-P(D

576z  T= DLOG(1.0/(PP+PP))

$7i=  T= DSQRT(D

5722 DO2J=1,2

573= 2 XNUM = XNUM + CC(DN#*T*=DBLE(J)

$S74= DO3J=4{,3

$75= 3 XDEN = XDEN + DD(J) # T#*DBLE(J)

5762 7P =T - XNUM/XIDEN

577= Y= -2P

578=  IF (P(1).GT.0.5) Y(I)=2ZP
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e 579= 1 CONTINUE
o 580=  RETURN

25 AT Se1= END

- M 582=  SUBROUTINE VRAT

583=C##THIS ROUTINE EXPRESSES V+1 AS A RATIONAL NUMBER. THIS IS NECES SARY

£ 584=C FOR CALCULATION OF THE QUANTIT (IN SUBROUTINE QUANTY)
g 585=  IMPLICIT DOUBLE PRECISION (A-H,0-2)

b2 586=  COMMON /COM1/ XK,XD,XI

o $87=  COMMON /BLANK2/ AHAT,BHAT,AINIT,BINIT,V

A 588=  DIMENSION AQ,2)

. 589=C++FIND RATIONAL NUMBER F=V+{ = XK/XD

o 599=  F= V#t

594= Wi = DBLEUDINT(F))

) 592=  X=F-Wi

o $93=  X= DBLE( IDINTX#1000. + .5))

< 594= Y= 1000. ;
o 595=  Al1,1) = Wi |
a 596=  Al1,2=1.

o 597=  AQ)= 1.
N 598=  A(2,2= 0.

Y $99=C#+IF X=0 , GO TO CALC

=) 400=  IFQ.EN.9.) GO TO 2

.. 601= B = DBLE( IDINT (¥/X))
S 662=  CALL MULTW&,B) |
o 603= INUM=Y |
“ 604=  DENOM =X |
605z DO 11=1,200

i G 06=  WORK1 = XNUM

: 607=  XNUM = DENOM

608= DENOM = DMOD(WORK{,DENOM
o 609=  1F (DENOM.EQ.9.) GO TO 2

-;" é16=  B= DBLE( IDINT(XNUM/DENCOM) )

611= 1 CALL MULT@A,B)
612=C#*CALC
613= 2XK=Al,1)

s -

ol 614= XD = A(2,1)
o 615  Xl=-f
< 616= TWO=2,
e 617=  IFOMODXX,TWOD).EQ.0.) XI=1
. 618=  RETURN
)5 619=  END
< 620=  SUBROUTINE MULT(&,B)
. 621=  IMPLICIT DOUBLE PRECISION (A-H,0-2)
622=  DIMENSION A2,2),C(2,2)
623=  C(1,1) = A(1,1)4B + A(1,2)
624=  CU1,2) = Al§,1)
" 6252 C(2,1) = A(2,1)#B + AQ,2)
K 626=  C(2,2) = A(2,1)
627= DO 1 1=1,2
< 628= DO 1 J=1,2
o 6292 1 AL = CLD
h{ 630=  RETURN
- 631= END

.‘l':"
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632=

SUBROUTINE QUANT!{ (P,HP)

633=C++THIS ROUTINE CALCULATES THE QUANTIT OF P. I.E.,GIVEN P,FIND H( B},

634=
635=
636=
637=
438=
639=
640=
644=
642=
643=
644z
645=
644=
647=
648=
449=
650=
651=
§52=
453=
454=
655=
656=
657=
658=

IMPLICIT DOUELE PRECISION (A-H,0-2
COMMON /COM{/ XK,XD,X1
COMMON /COM2/ P1,5Q2P1,A4,A2,A4,XLIKE
COMMON /BLANK2/ AHAT,BHAT,AINIT,BINIT,V
FaV+{,
IF (P.NE.0S)GD TO ¢
HP=9,
RETURN
1 PP=DABS(2.3P -1J

PPi= DEXP( DLOG(PF)/XD)
PP2z DEXP( 2.#DLOG®PP)/XD)
SUM1 = @.
SUM2 = 9.
SUM3 = o.
IMAX = IDINT({ XK-1.)/2.)
IF (IMAX.LT.1) GO TO 200
DO 20 I=1,IMAX
TEMPI = DBLE(])
WORK1{ = DCOSQ2.#PI#*TEMPI#XD/XX)
WORK2 = DCOS(2.#PI1+TEMPI/XK)
WORK3 = DSIN2.#PI#*TEMPI*#XD/XK)
WORK4 = DSIN(2.#PI*TEMP1/XK)
SUM{ = SUM{ - XD/XK) *+ WORK! # DLOG(1.~- 2.#PP{*WORK2 + PP2)
WORKS = PP1#+WORK4/(1. - PP1#WORK2)

20 SUM2 = SUM2 + 2.#(XD/XK)*WORK3 #* DATAN(WORKS)

659= 200 CONTINUE

669=
661=
662

663=
é64=
665=

IMAX = IDINT({ XD-1./X10
IF (IMAX.LT.1) GO TO 204
DO 301 ={,IMAX

TEMPI = -DBLE(D
WORK{ = TEMPI # F + {,
36 SUM3 = SUM3 - DEXP( WORK{ # DLOG(PP) ~ DLOG(WORK1) )

666= 201 HP = SUM{ + SUM2 + SUM3 - (XD/XK*DLOG({.-PP1)

667=
668=
669=
670=
671=
872=

{ + XD#(1.+X1)*DLOG(1. + PP1)/(2.#XXD)

HP = HP/2.D0

IF (P.LT.0.5) HP = -HP
RETURN

END

SUBROUTINE MLEAB

673=C#*THIS ROUTINE CALCULATES THE MLE'S FOR ALFPHA,BETA

474=
675=
676=
671=
678=
679=
é80=
481=
682=
683=

RIS, S S G h Y

IMPLICIT DOUBLE PRECISION (A-H,0-2

COMMON /BLANK{/ XX{58),XN(50),XS(56),XP(50),XPHAT(59),XSAVE P(59)
COMMON /BLANK2/ AHAT,BHAT,AINIT,BINIT,V

COMMON /BLANK3/ SAVEA(101),SAVEB(101)

COMMON /BLANK4/ ISETS,ITERA,ISWANA,IVOP,ISTEPR,XD,MN,IXSH
COMMON /BLANKS/ SAVEV(59),V123(3),SAVELN(S0). XL 123(3)

COMMON /COM2/ PI,5QG2P1,A1,A2,A4,XLIKE

DIMENSION Y(50),F(50)

EPSI = 8.004

MaXIT = 100

--------
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484= XLIKE=o.

4685= ITERA =4

6%8=  IF(ISWANA.EG.®) GO TO ¢
687= DO2I={,KD

688=  CALL QUANTI(XP(D,Y )N
489= 2 XPHATI(D = XP(I)

é96= GOTO2
é69i= | CALL INVNORZIP,Y,KD)
692=Cx+

693= DO20I=1,XD

4694= 20 Y(D) = Y(1)/5Q2P1
695=Cx+INITIAL ALPHA,BETA BY LEAST SQUARES
696= 3 IF(IXSW.EG.8) GO TO 4

497= SUMX = 0.

698= XTX =40.

699= DDSI=1,KD

700=  SUMX = SUMX + XX(D

70i= S XTX =XTX + XX(D=XX(D

702=  SSX = XTX - (SUMX#SUMX)/DBLEXD)
703=  XBAR = SUMX/DBLE(D)

704= IXSW=9

705= 4 CONTINUE

706= XTY =4.

707= SUMY = 4.

708= DO61=1,KD

709=  XTY = XTY + XX(D*Y{D

710= 4 SUMY = SUMY + Y(D

7ii=  YBAR = SUMY/DBLE(KD)

712 SSP=XTY - (SUMX # SUMY)/DBLE(KD)
713=  BHAT = S5P/S5X

714=  AHAT = YBAR - BHAT#XBAR
715=C#*NEWTOUN-RAPHSON PROCEDURE
716=C

747=C##ITER

718=  WRITEQ,51)

719= 51 FORMAT(1H@, »+ { ¥+

726= 7 IF(ITERA.EQ.0) GO TD 8

72i=  SAVEA(ITERA) = AHAT

722=  SAVEB(ITERA) = BHAT

723= GOTO?

724= § AINIT = AHAT

725=  BINIT = BHAT

726= 9 IF(ISWANA.EQ.0) GO TO 10

727=  CALL QUANCD(XPHAT.XX,F)
728« GO TO {4

729= 10 CALL NORMCD(XFHAT,XX,KD,F)

730= 11 Ai=9
731=  A2=0
732z A4=0
733=  Bi=@
734=  B2=0

735 WRITE@,S52)

38
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A
<,
R
e 736s 52 FORMAT(1HO, #+ 2 #+)
20 ) 737= DO121=1,KD
SR 738=  WRITE,100) I,XX(),XFPHAT(D
o = 739= 1900 FORMAT({H,'I,XX(I),XPHAT(D= *,I5,2(F10.5)
.8 780= W= XN() / XPHAT(#(1, - XFHAT(D))
iy 781=  FF = F(D*F(D
oY 742= Al = Al + WaFF
- 743= A2 = A2 + XX(D#W#FF
! 784 A4 = A4 + XX(DEXX(D+W*FF
743= BB = WaF(DHXSAVER() - XPHAT(D )
746= Bi=B1+BB
o 747= 12 B2 = B2 + BB#XX(D
N 748=  WRITEQ,53)
k. 749= 53 FORMAT(HO, '+ 3 ##)
EL 750=  DET = A1#A4 - A2#A2
- 751=  WRITEQ,54)
- 752= 54 FORMAT({H0, %+ 4 ¥+
e 753=  DET = 1./DET
N 754=  ADELT = DET#A4#B1 - A2¢B2)
: 755=  BDELT = DET#A1#B2 - A2#B1)
N 756=  ABSAD s DABS(ADELT)
= 757=  ABSBD = DABS(BDELT)
o 758=  IF( (DMAX4(ABSAD,ABSBD).GE.EPSD.AND.(ITERA.LT.MAXIT) ) GO TO 14
] 759= GO TO1S
N 760= 14 AHAT = AHAT + ADELT
N 764=  BHAT = BHAT + BDELT
N 7622 ITERA = ITERA +1
@ 763=C+2G0 TO ITER
x h 74 GDTO?
'!;_:‘ 765= 1S IF( (ODMAX1(ABSAD,ABSBD).GE.EPSI).AND.UTERA.EQ.MAXITHWRITE (2,16)
< 766= IMAXIT .
o 767= 16 FORMAT({He,"THE ITERATION PROCESS HAS BEEN STOPPED. CONVERG ENCE HA
L 768= 1S NOT BEEN ATTAINED AFTER ‘,14,’ ITERATIONS."
: 769= Al = DET#Al
0 770= A2 = DET#A2
A 774= A4 = DET*A4
‘ 2} 772=  XLIKE=0.
V. 773= DO 17 Ia4,XD
a7 778= YN = XN(D
775=  YS= XS(D
-~ 776=Casa22Q4 = DLGAMA(YN + 1) - DLGAMA(YS+1.) - DLGAMA(YN - YS +1)
G0 777=C#+ KEHL FIX DLGAMA NOT ON IMSL
o 778=  XXEHL1sDABS(GAMMA(YN+1.))
o) 779=  XKEHL2=DABS(GAMMA(YS+1.)
780=  XKXEHL3=DABS(GAMMA(YN-YS+{J)
781=  Q1sDLOG(XKEHL1)-DLOG(XKEHL2)-DLOGXKEHL3)
A 782= 17 XLIXE = XLIKE + Q1 + YS#DLOGXPHAT(I) + (YN-YS)*DLOG({.-XP HAT(I)
' 783=  RETURN
P 784= END
B
A
SR
s
)
b2
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APPENDIX F

Computer Programs for Section VI

The first two programs, SYMTST and ASYMTST, calculate the test sta-
tistic in equations 4.3 and 4.7 respectively. The input data should be

on TAPE 5 in the following order:

1.) First card - the logit regression coefficients B8 and Bl.

2.) Second card - title up 10 characters.

3.) Third card - N, the number of dose levels.

4.) Fourth through N+3 cards - the dose, number of subjects, number

of responses
The test statistic and its variance are both printed on the interactive
system display and written to TAPE 7.

The next two programs, SYMFIT and ASYMFT, uses an incremental pro-
cedure to fit the data to the models given by equations 4.1 and 6.5 re-
spectively. The value of lambda is incremented and new values of the
least squares coefficients are calculated until the log likelihood func-
tion is maximized. The input to the programs should be on TAPE 5 in ex-
actly the same order as 2 through 4 above, the first card is NOT used by

these programs.
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=  PROGRAM SYMTST

2= REAL N(20),X(20),R(20),THE(20),IBL(2),18B(2,2),ILL,TCUBE(20 )
3= +E(20)

4= CHARACTER NAME#10

S=  READ(5,#B0,B!

é= READG,(A10))NAME

7=  READG,#NUM

8= DO 10 I={ ,NUM

9= READG#®X(D,N(),R(MD

10=  X(D=ALOGX(I))

1= IFR(1).EQ.0) THEN

12= R(I)=5

13 ENDIF

i4=  TEMP=Bo+Bi#X(D)

15=  TCUBE(D=TEMP#+3

16=  THE(D=1/(1 +4EXP(~-TEMF))
17=16 CONTINUE

18 U=9.0

19=  ILL=0.0

2= DO 20 I=4,2

21 IBL{l)=0.0

22= DO 30 J={,2

23=  IBB(I,J)=0.0

24230 CONTINUE

25220 CONTINUE

26= DO 49 I={,NUM

27=  FACT=N(D®(THE()#(1.-THE(I)
28=  ILL=ILL+(FACT*TCUBE(I)*#2)/144

29=  PART=((R(D-N(D*THE(D)*TCUBE(1)/12
30=  UsU+PART

3i=  IBL(1)=IBLU)+FACT#TCUBE(I)/12

32= IBLQ)=IBLQ)+FACT#+X(1)*TCUBE(I))/12
33=  IBB(1,1)=IBB(1,1)+FACT

34= [BB(1,2)=IBB(1,2)+FACT#X(I)

35=  1BBQ2,2)=IBBQ2,2)+FACT*X(1)##2)
36=40 CONTINUE

37=  DET=IBB({,1)*1BB(2,2)-1BB(1,2)##2
38=C REDEFINE IBB TO BE IBB INVERSE

39=  TEMP=IBB(1,1)/DET

40=  1BB(1,1)=1BB(2,2)/DET

4i=  1BB(2,2)=sTEMP

42=  1BB(1,2)=-1BB({,2)/DET

43=  IBB(2,1)=1BB(1,2)

44=C FINISH INVERSE ROUTINE
45= Ti=0.0
4= T2=9.0

47= DO SO I=4,2

48=  Ti=IBL(I)*IBB(I,1)+T{

49=  T2sIBL()#1BB(I,2)+T2

S0=50 CONTINUE

Si=  VAR=ILL~(T1#IBL(1)+T2#IBL(2))
S2=  STDVs=SQRT(VAR)

S3=  PRINT+,U,STDV

?1




w7 S4=  TESTV=U/STDV

S $5=  PRINT#,TESTV

N \i\% Sé3 WRITE(7,'(A19,3F20.10)"NAME,U,STDV,TESTV
$7= END

Pl

{

2) (TR

% RE
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= PROGRAM ASYMTS
2= REAL Ni(20),X(20),R(20),THE(20),IBL(2),1BB(2,2),ILL,FACT(20)
o 3= +,EQ0)
' 4= CHARACTER NAME#*i0
9= READ(5,#)B0,B1
é= READG,/(A10))NAME
7= READ(SNUM
8= DO 10 I={ ,NUM
9= READGHX(D,N(1),RD
1= X(D=ALOGX()
it1=  IF®R(.EQ.0) THEN
12= RMN=S
i3= ENDIF
14= TEMP=B#+B1i#X(])
1S=  E{l=EXP(TEMP)
16= THE(D=E(I) /(1 .+E(1))
17=10 CONTINUE
18=  U=0.0
19= ILL=0.9
20= DD 20 I=4,2
24= IBL(D)=0.0
222 DO 30 J=4,2
23= IBB{l,J)=0.0
24239 CONTINUE
25220 CONTINUE
26= DO 40 I={,XUM
27=  FACTI)=THE(D+ALOG(1.-THE()
Q 28= ILL=ILLHFACT(1)#22)=R(1)/E(D)
29=  UsU+FACT)/THE(M*R(D-N()*THE(I)
30= IBL(1)=IBL(1)+FACT(D)*N(D)»({1 .-THE(I))
3= IBL2)=]IBLQ2)}FACT(#N(1)#X (I)a({ .~-THE))
32= IBB{1,1)=IBB(1,1)+RD*THE()#{{ .-THE(I)
33= IBB(1,2)=1BB(1,2)+N(D#X (1}#THE(1)#{{ .-THE(I)
= IBB(2,2)=1BB(2,2)+N(D*X (1) ##2)» THE(D#(1 .-THE(]))
35=40 CONTINUE
36= DET=1BB{1,1)81BB(2,2)~-1BB({1,2)##2
37=C REDEFINE 1BB TO BE IBB INVERSE
38= TEMP=IBB({,1)/DET
39= 1BB(1,1)=1BB(2,2)/DET
48= 1BB(2,2)=TEMP
Sé= IBB(1,2)=-1BB({,2)/DET
= 1BB(2,1)=1BB(1,2)

S2=C FINISH INVERSE ROUTINE
S3= Ti=0.0
S4=  T2=0.0

SS= DO Se I=4,2
Sé=  Tis]BL(MIBBU4MTI
S7=  T2=IBL(D*IBB(1,2)+T2
S8s=5¢0 CONTINUE
59=  VARSILL-(T1#IBL(1+T2#{IBL(2)»
é0=  STDV=SORT(VAR
éi=  PRINT»U,STDV
“oe é2=  TESTVsU/STDV

. N
2N
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é3=
é4=
é5=

PRINT+,TESTV

WRITE(7,'(A19,3F20.19))NAME,U,STDV,TESTV

END
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X 1= PROGRAM SYMFIT

> 2= IMPLICIT DOUBLE PRECISION(A-H,0-1)

o 3= COMMON/SET1/X(20),XP(20),TAU(20),XLAMDA,AHAT,BHAT,N(20)
T 4= COMMON/SET2/NUM,IXSW

5= REAL ISTAT,IDF\IQUE

DOUBLE PRECISION MLEHAT,R(2¢),PFIN(20),THE(20)
7= CHARACTER NAME#20

8=  IXSW={

&
o
[}

N 9=  CHECK=10000.
16=  CHXLIK=-999999999.
f1=  PRINT#/’ NAME?
N 12=  READ(#,'(A20))NAME
13=  READ(S,®)NUM
N 14=  IDFaNUM-2.
. 1S= DO 10 IN={,NUM
16= READG,#)X (1N, N(IN),R(IN)
172 X (IN>=DLOGX (IN)
& 18= IF(R(N.EQ. 0 R(IN)=S
S 19= XP(IN=RIN/NUIO
; 20=10 CONTINUE
: 21=  INCLAM=9
; 22= DO 20 J=1,200
23= XLAMDA=DBLE(INCLAM)/100.
> 24=  INCLAM=INCLAM+1
o 25=  XLLF=0.0
b 26= CALLLSE
3 27=  STAT=0
Q 28=  XLIKE=9.9
NI 29= DO 30 1=4,NUM
s 30= FACT=S5#XLAMDA*AHAT+BHAT#X(I)
. 3= IF(DABS(FACT).LT. {. .AND. FACT .NE. .) THEN
" 32= Ti=(1.+FACT)#*(1/XLAMDA)
N 33s T2=(1.-FACT)*##{(1/XLAMDA)
34 THE(D=T1/(T1+T2)
‘ 35= ELSE IF(FACT.EQ. 9.9) THEN
. 36= THE(D=1/(1+EXP(-AHAT-BHAT*X(D)))
. 37= ELSE IF(FACT.LE. -1 THEN
38= THE()=.9999999999
39= ELSE
4= THE(I)=.0000000001
. 41z  ENDIF

42=  EXPECT=N(D)*THE(D

43=  DIFFSO=(R(D)-EXPECT)##2
) 44=  TEST=DIFFSQ/(EXPECT#i.-THE(D))
X 45=  STAT=STAT+TEST
46=  XLIKEsXLIKE+R(#*DLOG(THE(IN+N(I)~-R(IN+*DLOG(1.-THE(I)
47=30 CONTINUE
48=  IF(STAT.LT.CHECOOTHEN i
49= DO 48 XX={,NUM ‘
5= PFIN(KK)=THE(XX)
31240 CONTINUE
32= CHECK=STAT

Y v ¢

R $3=  CHELIKsXLIKE

: ‘. '.
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Y
) Sé=  MLEHAT=XLAMDA
- $S=  BO=AHAT
SNEA X Sé= Bi=BHAT
. $7= IF
z 58=20 CONTINUE
o S9=  WRITE(?,"(F6.4:2F20.15))MLEHAT,B#,B1
™ é0=  WRITEQ?,#CHKLIX
é1=  WRITE(7,'tA20)YRAME
N 62=  WRITEQ,%)THERE ARE ‘. NUM,’ DATA POINTS.’
3= WRITE(?,®
~ é4=  WRITEQ,®
~ é5=  WRITEQ?,®
' 463, WRITEQ,»'MTBF LAUNCHES ABORTS PRED ABT FPROB
> 67= DO 50 1s4,NUM
' 68  EXPECT=N(D#FFIN(D
é9=  DIFFSQ=(R(I)-EXPECT)##2
3 76=  TEST=DIFFSQ/(EXPECT#1.-PFIN()
3 iy  WRITEQ,'(3F7.0,7X,F9.5,5X,F8.5:3X,F7.4))X (1, REAL(N()
L1 72=  +,EXPECT,PFIN(D),TEST
> 73=50 CONTINUE
, 74=  ISTAT=REAL(CHECIO
i 7%=  CALL MDCH(STAT,IDF,IQUE,IER)
W 76=  PCHI=1.-IQUE
A 77=  WRITE(7,®
W 76=  WRITE(#)’ TEST STATISTIC CHI-SQ TAIL PROB’
, 79=  WRITE(7,'(3X,F10.6,15X F7.5))CHECK,PCHI
(Y] 80=  WRITE(T™
81= END
3 82=  SUBROUTINE LSE
,_3 83=  IMPLICIT DOUBLE PRECISION(A-H,0-2
' 84=  COMMON/SET1/X(20),XP(20),TAUQ0),XLAMDA ,AHAT,BHAT,N(29)
85=  COMMON/SET2/NUM,IXSW
) 86=  DOUBLE PRECISIOR W(20)
o 87= DO 1 I=1,NUM
S 88=  IF(XLAMDA.EQ. 0.0) THEN
by 89=  TEMP=XP(D)/(1.-XP(D)
' 90=  TAU(=DLOG(TEMP)
5 91=  ELSE
\ 922 TEMPi=(1.-XP(D}#*XLAMDA
i 93=  TEMP2=XP(D#XLAMDA
19 942 XNUM=2#TEMP2-TEMPi)
) 952 XDENOM=XLAMDAMTEMP2+TEMP})
i 96=  TAUM=XNUM/XDENOM
e 97=  ENDIF
. 98=1  CONTINUE
. 99=  IF(IXSW .EQ. 8) GOTO 4
3 100=  SUMX=0.
i 101=  SUMW=0.0

102=C SET UNW=4 IF UNWEIGHTED LS IS WANTED SET TO
103=C ANYTHING ELSE FOR WEIGHTED LS
X f04=  UNWsi,

LW

- 94




) 16S=  XTX=0,
s 106= DO I=1,NUM
L 197= W(D=DBLEQ(IN*XP)*{1 ,~X P
- 108= IF(UNW.EQ.0.)THEN
109= W(D=1,
110= SUMW=SUMW+W(D
1= ELSE
112= SUMW=SUMW+W(D
- 113 END IF
114= SUMX=SUMX+X (D#W(I)
115= XTX=XTX +(X (D #22)#W(D)
- 116=5 CONTINUE
< 117z SSXaXTX-(SUMX##2)/SUMW
- 118=  YBAR=SUMX/SUMW
T 119=  IXSW=9
: 120=4 CONTINUE
] 121=  XTY=0.
2 122=  SUMY=e,
~ 123= DO é 1=1,NUM
< 124= XTY=XTY+X(D#TAUD*W(D)
N 125= SUMY=SUMY+TAT(D+W(D)
126=6 CONTINUE
127=  YBAR=SUMY/SUMW
9 128=  SSP=XTY-(SUMX+#SUMY)/SUMW
129s  BHAT=SSP/SSX
s, 130= AHAT=YBAR-BHAT#XBAR
N 131=  RETURN
o 132= END
N )
"
i
.
>
L]
e
!
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135=
136=

137=
138=
139=
149=
144=
142=
143=
144=
145=
146=
147=
148=
149=
159=
151=
152=
153=
154=
155=10
156=
157=
158=
159=
168=
161=
162=
163=
164=
163=
166=
167=
168=
169=
179=
i74=
172=
173=
174=
175=
176=
1=
178=
179=30
i80=
181=
182=
183=49
184=
185=
184=

PROGRAM ASYMFT
IMPLICIT DOUBLE PRECISION(A-H,0-2)

COMMON/SET!/X(290),XP(20),TAU(29),XLAMDA ,AHAT,BHAT,N(20)

COMMON/SET2/NUM,IXSW
REAL ISTAT,IDF,IQUE

DOUBLE PRECISION MLEHAT,R(28),PFIN(20),THE(20)

CHARACTER NAME*40
IXSH=1
CHECK=10000.
CHKLIK=-9999999999
PRINT#*," NAME?'
READ(%,'(A40)')NAME
READG,#INUM
IDF=NUM-2.
DO 10 IN=1,NUM
READ (5,8 X(IN),N(IND,R(IN)
X(IN=DLOGX(IN))
IF(R(IND).EQ. 0JR(IND=.5
XP(IN)=R(IN)/N(IN)
IFXP(IN.EQ.1 YXP(IN)=.9999
CONTINUE
INCLAM=-500
DO 26 J=1,1000
XLAMDA=DBLE(INCLAM)/{.
INCLAM=INCLAM+{
XLLF=0.0
CALL LSE
STAT=0
XLIKE=0.9
DO 30 I={,NUM
FACT=XLAMDA*EXPAHAT+BHAT#X(I))
IF(FACT.GT. -1. .AND. FACT .NE. 9.) THEN
Tis({.+FACT)##(-{ ./XLAMDA)
THE(D=1.-T{
ELSE IF(FACT.EQ. 0.8) THEN
THE(D=1{.-EXP(-EXP(AHAT+BHAT*X(I)»)
ELSE IF(FACT.LE. -1.) THEN
THE(D=.9999999999
ENDIF
EXPECT=N(I)*THE(I)
DIFFSQ=(R(I)-EXPECT)#*2
TEST=DIFFSQ/(EXPECT#(1.-THE(I)))
STAT=STAT+TEST

XLIKE=XLIKE+R{I)#*DLOG(THE(D)+(N(I)-R(1)#DLOG(1.~THE(I))

CONTINUE
IFXLIKE.GT.CHKLIK)THEN
DO 40 KK={,NUM
PFINKK)=THEKI)
CONTINUE
CHECKsSTAT
CHKLIK=XLIKE
MLEHAT=XLAMDA




187= BO=AHAT

183= B1=BHAT

189=  END IF

190=20 CONTINUE

191=  WRITEQ,'(F10.5,2F20.15)YMLEHAT,B9,B1

192=  WRITE(7,#)CHKLIK

193=  PRINTHMLEHAT

194=  WRITE(?,'(A60))NAME

195=  WRITE(7,#)'THERE ARE ‘,NUM,’ DATA POINTS.’
196=  WRITEQ#®

197=  WRITEQ,®

198=  WRITE(,®

+§%=, WRITE(,#)' MTBF LAUNCHES ABORTS PRED ABT PROB

200= DO 50 I={,NUM

204= EXPECT=N()#+PFIN(I)

202= DIFFSG=(R(IN-EXPECT)#»2

203= TEST=DIFFSQ/(EXPECT#(1.~-PFIN(I)))

?&‘k) WRITE(?,'(3F7.0,7X,F9.5,5X,F65:3XF7.4) TREALN()

205=  +EXPECT,PFIN(D),TEST

206=30 CONTINUE

207=  ISTATsREAL(CHECX)

208= CALL MDCH(ISTAT,IDF,IQUE,IER)

209 PCHI={.-1QUE

21¢=  WRITEQ,®

214=  WRITEQ,#)’ TEST STATISTIC CHI-SQ TAIL PROB’
2{2=  WRITE(,'Q3X,F10.6,15X,F7.5)7CHECK,PCHI
2i3=  WRITEG®

2i4= END

215=  SUBROUTINE LSE

2= IMPLICIT DOUBLE PRECISION(A-H,0-2)
217= COMMON/SET1/X(20),XP{20),TAU(20),XLAMDA,AHAT,BHAT,N28)
218= COMMON/SET2/NUM,IXSW

219=  DOUBLE PRECISION W(20)

226= DO i I={,NUM

224= IFXLAMDA.EQ. 9.0) THEN

222= TEMP=4./(1.-XP(1)

223= TAU()=DLOG(DLOG(TEMP))

224=  ELSE

225= TEMPi=({.-XP(D))#:{-XLAMDA)

226= TEMP2=(TEMP1-1.)/XLAMDA

227= TAU(D=DLOG(TEMP2)

228= IF

229=1 CONTINUE

230= IF(IXSW .EQ. 0. GOTOC 4

231=  SUMX=4.

232=  SUMN=0.0

233=C SET UNW=¢ IF YOU WANT UNWEGHTED LS,IF NEED WEIGHTED
234=C SET UNW TO ANYTHING BUT { (ONB

233= UNW=4.

234= XTX=9.

237 DO I={,NUM
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238= W(D=DBLEQUD*XP(D)#(1.-XP(I)
R 239= IF(UNW.EQ.0. THEN
JNR N 249= WD=t,
t - 244= SUMW=SUMW+W(I)
- 2422 ELSE
o 243= SUMW=SUMW+W(I)
i 244= END IF
X 245= SUMX=SUMX+X (D#W(D
b 244= XTX=XTX+X(D#£2)#W(D)
247=5 CONTINUE
- 248=  SSXsXTX-(SUMX##2)/SUMNW
- 249=  XBAR=SUMX/SUMW
. 256=  IXSW=0
o 251=4 CONTINUE
< 252=  XTY=0,
) 253=  SUMY=0.
. 254= DO 6 I=1,NUM
B 255= XTY=XTY+X(D*TAUD*N(D)
» 256= SUMY=SUMY +TATMD*W(D
257=6 CONTINUE
- 258=  YBAR=SUMY/SUMW
k 259=  S5P=XTY-(SUMX#SUMY)/SUMW
260=  BHAT=SSP/SSX
x 261=  AHAT=YBAR-BHAT#XBAR
. 262=  RETURN
y 263= END
. i
N
>
. :
et
hY
)
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